Abstract
The effect of multi-walled carbon nanotubes (MWCNT) loading on the crystallization behavior of matrix polyamide 12 (PA-12), in PA-12/polypropylene-MWCNT (PP-MWCNT)-based nanocomposites were analyzed for their non-isothermal crystallization behavior at various cooling rates of 2.5–20 °C/min in differential scanning calorimetry (DSC). Several kinetic models such as Jeziorny (modified-Avrami), Mo and Tobin models were employed to analyze the crystallization behavioral trend with respect to time and temperature of the nanocomposites. The crystallization rate increased half-time of crystallization with MWCNT content as estimated from the Jeziorny theory. The linear agreement between Jeziorny model and experimental relative crystallinity outperforms the Tobin analysis where the coefficient of linear regression was found to be considerably trailing behind and off the satisfactory mark. The Mo model accounts for the percentage crystallinity and thereby successfully explained the crystallization behavior of PA-12 where the kinetic parameters increased with crystallinity indicating higher cooling rate for higher crystallinity. The MWCNT induced crystallization (nucleation activity) values were close to zero irrespective of MWCNT loading which reiterates the enhanced crystallization (rate) of PA-12 in the nanocomposites. Estimations based on Friedman approach showed inter-relationship between activation energy and crystallinity where the later was found to be governed by major (matrix) PA-12 phase.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Li, J., Fang, Z., Tong, L., Gu, A., Liu, F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur. Polym. J. 2006, 42, 3230–3235; https://doi.org/10.1016/j.eurpolymj.2006.08.018.Search in Google Scholar
2. Wu, D., Zhang, Y., Zhang, M., Yu, W. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10, 417–424; https://doi.org/10.1021/bm801183f.Search in Google Scholar
3. Laredo, E., Grimau, M., Bello, A., Wu, D. F., Zhang, Y. S., Lin, D. P. AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites. Biomacromolecules 2010, 11, 1339–1347; https://doi.org/10.1021/bm100135n.Search in Google Scholar
4. Gonzalez-Montiel, A., Keskkula, H., Paul, D. R. Impact-modified nylon 6/polypropylene relationships. Polymer (Guildf.) 1995, 36, 4587–4603; https://doi.org/10.1016/0032-3861(95)96828-v.Search in Google Scholar
5. Okada, O., Keskkula, H., Paul, D. R. Nylon 6 as a modifier for maleated ethylene-propylene elastomers. Polymer (Guildf.) 1999, 40, 2699–2709; https://doi.org/10.1016/s0032-3861(98)00497-2.Search in Google Scholar
6. Campoy, I., Arribas, J. M., Zaporta, M. A. M., Marco, C., Gómez, M. A., Fatou, J. G. Crystallization kinetics of polypropylene-polyamide compatibilized blends. Eur. Polym. J. 1995, 31, 475–480; https://doi.org/10.1016/0014-3057(94)00185-5.Search in Google Scholar
7. Seo, M. K., Lee, J. R., Park, S. J. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes. Mater. Sci. Eng. A 2005, 404, 79–84; https://doi.org/10.1016/j.msea.2005.05.065.Search in Google Scholar
8. Layachi, A., Frihi, D., Satha, H., Seguela, R., Gherib, S. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J. Therm. Anal. Calorim. 2016, 124, 1319–1329; https://doi.org/10.1007/s10973-016-5286-0.Search in Google Scholar
9. Sattari, M., Mirsalehi, S. A., Khavandi, A., Alizadeh, O., Naimi-Jamal, M. R. Non-isothermal melting and crystallization behavior of UHMWPE/SCF/nano-SiO2 hybrid composites. J. Therm. Anal. Calorim. 2015, 122, 1319–1330; https://doi.org/10.1007/s10973-015-5003-4.Search in Google Scholar
10. Huang, J. W., Chang, C. C., Kang, C. C., Yeh, M. Y. Crystallization kinetics and nucleation parameters of nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim. Acta 2008, 468, 66–74; https://doi.org/10.1016/j.tca.2007.12.001.Search in Google Scholar
11. Valentini, L., Biagiotti, J., Kenny, J. M., López Manchado, M. A. Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites. J. Appl. Polym. Sci. 2003, 89, 2657–2663; https://doi.org/10.1002/app.12319.Search in Google Scholar
12. Chen, E. C., Wu, T. Z. Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multi-walled carbon nanotube composites. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 158–169; https://doi.org/10.1002/polb.21351.Search in Google Scholar
13. Fereidoon, A., Ahangari, M. G., Saedodin, S. A DSC study on the nonisothermal crystallization kinetics of polypropylene/single-walled carbon nanotube nanocomposite. Polym. Plast. Technol. Eng. 2009, 48, 579–586; https://doi.org/10.1080/03602550902824408.Search in Google Scholar
14. Ahmad, I. A., Kim, H. K., Deveci, S., Kumar, R. V. Non-isothermal crystallisation kinetics of carbon black-graphene-based multimodal-polyethylene nanocomposites. Nanomaterials 2019, 9, 19–24; https://doi.org/10.3390/nano9010110.Search in Google Scholar
15. McFerran, N. L., Armstrong, C. G., McNally, T. Nonisothermal and isothermal crystallization kinetics of nylon-12. J. Appl. Polym. Sci. 2008, 110, 1043–1058; https://doi.org/10.1002/app.28696.Search in Google Scholar
16. Liu, S., Yu, Y., Cui, Y., Zhang, H., Mo, Z. Isothermal and non-isothermal crystallization kinetics of nylon-11. J. Appl. Polym. Sci. 1998, 70, 2371–2380. https://doi.org/10.1002/(sici)1097-4628(19981219)70:12<2371::aid-app9>3.0.co;2-4.10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4Search in Google Scholar
17. Sethy, S., Satapathy, B. K. Microstructural interpretations on thermo-mechanical relaxation and electrical conductivity of polyamide-12/polypropylene-MWCNT nanocomposites. J. Polym. Res. 2020, 27, 1–2; https://doi.org/10.1007/s10965-020-02045-0.Search in Google Scholar
18. Fatou, J., Marco, C., Mandelkern, L. The influence of molecular weight on the regime crystallization of linear polyethylene. Polymer (Guildf.) 1990, 31, 1685–1693; https://doi.org/10.1016/0032-3861(90)90186-3.Search in Google Scholar
19. Fava, R. A. Methods of Experimental Physics; Academic Press: New York, NY, 1980.Search in Google Scholar
20. Balamurugan, G. P., Maiti, S. N. Nonisothermal crystallization kinetics of polyamide 6 and ethylene-co-butyl acrylate blends. J. Appl. Polym. Sci. 2008, 107, 2414–2435; https://doi.org/10.1002/app.27377.Search in Google Scholar
21. Samantaray, S. K., Satapathy, B. K. On the crystal growth kinetics of ultra-toughened biobased polyamide 410: new insights on dynamic crystallization. J. Appl. Polym. Sci. 2021, 51494, 1–19.10.1002/app.51494Search in Google Scholar
22. Shi, J., Yang, X., Wang, X., Lu, L. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. Polym. Test. 2010, 29, 596–602; https://doi.org/10.1016/j.polymertesting.2010.03.007.Search in Google Scholar
23. Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer (Guildf.) 1978, 19, 1142–1144; https://doi.org/10.1016/0032-3861(78)90060-5.Search in Google Scholar
24. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer (Guildf.) 1971, 12, 150–158; https://doi.org/10.1016/0032-3861(71)90041-3.Search in Google Scholar
25. Liu, T., Mo, Z., Zhang, H. Crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J. Appl. Polym. Sci. 1998, 67, 815–821; https://doi.org/10.1002/(sici)1097-4628(19980131)67:5<815::aid-app6>3.0.co;2-w.10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-WSearch in Google Scholar
26. Şanlı, S., Durmus, A., Ercan, N. Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber‐and mineral‐filled polyamide‐6 composites. J. Appl. Polym. Sci. 2012, 125, E268–E281.10.1002/app.36231Search in Google Scholar
27. Tobin, M. C. Theory of phase transition kinetics with growth site impingement. I. Homogeneous nucleation. J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 399–406; https://doi.org/10.1002/pol.1974.180120212.Search in Google Scholar
28. Tobin, M. C. The theory of phase transition kinetics with growth site impingement. II. Heterogeneous nucleation. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 2253–2257; https://doi.org/10.1002/pol.1976.180141210.Search in Google Scholar
29. Tobin, M. C. Theory of phase transition kinetics with growth site impingement. III. Mixed heterogeneous–homogeneous nucleation and nonintegral exponents of the time. J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 2269–2270; https://doi.org/10.1002/pol.1977.180151217.Search in Google Scholar
30. Rinawa, K., Maiti, S. N., Sonnier, R., Lopez Cuesta, J. M. Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bull. Mater. Sci. 2015, 38, 1315–1327; https://doi.org/10.1007/s12034-015-1016-7.Search in Google Scholar
31. Vyazovkin, S., Sbirrazzuoli, N. Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization Macromol. Rapid Commun. 2004, 25, 733–738; https://doi.org/10.1002/marc.200300295.Search in Google Scholar
32. Vyazovkin, S., Sbirrazzuoli, N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J. Phys. Chem. B 2003, 107, 882–888; https://doi.org/10.1021/jp026592k.Search in Google Scholar
33. Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 2007, 6, 183–195; https://doi.org/10.1002/polc.5070060121.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0195).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: non-isothermal kinetics approach
- Effect of antiblock and slip additives on the properties of tubular quenched polypropylene film
- A local green composite study: the effect of edible oil on the morphological and mechanical properties of PBS/bentonite composite
- Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich
- Improving the rheological properties of water-based calcium bentonite drilling fluids using water-soluble polymers in high temperature applications
- Mechanical, thermal and morphological properties of polyoxymethylene nanocomposite for application in gears of diaphragm gas meters
- Preparation and Assembly
- Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth
- Engineering and Processing
- Nano-SiO2/hydroxyethyl cellulose nanocomposite used for 210 °C sedimentation control of petroleum drilling fluid
- Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes
Articles in the same Issue
- Frontmatter
- Material Properties
- Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: non-isothermal kinetics approach
- Effect of antiblock and slip additives on the properties of tubular quenched polypropylene film
- A local green composite study: the effect of edible oil on the morphological and mechanical properties of PBS/bentonite composite
- Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich
- Improving the rheological properties of water-based calcium bentonite drilling fluids using water-soluble polymers in high temperature applications
- Mechanical, thermal and morphological properties of polyoxymethylene nanocomposite for application in gears of diaphragm gas meters
- Preparation and Assembly
- Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth
- Engineering and Processing
- Nano-SiO2/hydroxyethyl cellulose nanocomposite used for 210 °C sedimentation control of petroleum drilling fluid
- Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes