Home Electrical conductivity and thermal stability of surface-modified multiwalled carbon nanotubes/polysulfone/poly(p-phenylenediamine) composites
Article
Licensed
Unlicensed Requires Authentication

Electrical conductivity and thermal stability of surface-modified multiwalled carbon nanotubes/polysulfone/poly(p-phenylenediamine) composites

  • Ahmed E. Abdelhamid , Azza A. Ward and Ahmed M. Khalil ORCID logo EMAIL logo
Published/Copyright: March 7, 2022
Become an author with De Gruyter Brill

Abstract

Multiwalled carbon nanotubes (MWCNTs) were functionalized with acid then coated with poly(p-phenylenediamine) (PpPD). Various concentrations of modified multiwalled carbon nanotubes (MWCNTs@PpPD) were introduced to a polysulfone (PSU) and poly(p-phenylenediamine) (PpPD) blend providing nanocomposites in form of sheets. Chemical oxidative polymerization was used to polymerize p-phenylenediamine. PpPD is then applied as a compatibilizer in such heterogeneous system to facilitate a successful percolation for MWCNTs in the polymeric matrix as an enhanced conductive filler. The morphological investigations showed homogeneous distribution for MWCNTs in the polymeric matrix. The prepared composites were investigated demonstrating favorable thermal and electrical properties. Thermogravimetric analysis (TGA) emphasized that MWCNTs@PpPD contributed in enhancing the thermal stability of the prepared sheets. The electrical conductivity of PSU/PpPD/MWCNTs@PpPD nanocomposites boosted upon raising the magnitude of loaded MWCNTs. The existence of MWCNTs@PpPD in the polymeric matrix extended the interfacial polarization effects with elevating the conductance. The loaded composite with (7.5 wt%) MWCNTs@PpPD showed the optimum electrical conductivity values. It was then treated with HCl to protonate the amine groups in PpPD showing higher conductivity value than its corresponding untreated one. PpPD and MWCNTs contributed synergistically in modifying the insulation feature of PSU to a favorable electrical conductivity one.


Corresponding author: Ahmed M. Khalil, Photochemistry Department, National Research Centre, Dokki 12622, Giza, Egypt, E-mail:

Funding source: National Research Centre

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge National Research Centre (NRC), Egypt for funding this work.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Buruiana, L. I., Avram, E., Popa, A., Musteata, V. E., Ioan, S. Electrical conductivity and optical properties of a new quaternized polysulfone. Polym. Bull. 2012, 68, 1641–1661. https://doi.org/10.1007/s00289-011-0659-9.Search in Google Scholar

2. Zhang, S., Tang, N., Cao, L., Yin, X., Yu, J., Ding, B. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles. ACS Appl. Mater. Interfaces 2016, 8, 29062–29072. https://doi.org/10.1021/acsami.6b10094.Search in Google Scholar PubMed

3. Abdelhamid, A. E., El-Sayed, A. A., Khalil, A. M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841. https://doi.org/10.1515/polyeng-2020-0141.Search in Google Scholar

4. Rambabu, K., Bharath, G., Arangadi, A. F., Velu, S., Banat, F., Show, P. L. ZrO2 incorporated polysulfone anion exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 2020, 45, 29668–29680. https://doi.org/10.1016/j.ijhydene.2020.08.175.Search in Google Scholar

5. Yuan, H. G., Liu, T. Y., Liu, Y. Y., Wang, X. L. A homogeneous polysulfone nanofiltration membrane with excellent chlorine resistance for removal of Na2SO4 from brine in chloralkali process. Desalination 2016, 379, 16–23. https://doi.org/10.1016/j.desal.2015.10.006.Search in Google Scholar

6. Abbasi, H., Antunes, M., Velasco, J. I. Effects of graphene nanoplatelets and cellular structure on the thermal conductivity of polysulfone nanocomposite foams. Polymers 2020, 12, 12010025. https://doi.org/10.3390/polym12010025.Search in Google Scholar PubMed PubMed Central

7. Guerrouache, M., Khalil, A. M., Kebe, S., Le Droumaguet, B., Mahouche-Chergui, S., Carbonnier, B. Monoliths bearing hydrophilic surfaces for in vitro biomedical samples analysis. Surf. Innovations 2015, 3, 84–102. https://doi.org/10.1680/sufi.14.00011.Search in Google Scholar

8. Karbarz, M., Khalil, A. M., Wolowicz, K., Kaniewska, K., Romanski, J., Stojek, Z. Efficient removal of cadmium and lead ions from water by hydrogels modified with cysteine. J. Environ. Chem. Eng. 2018, 6, 3962–3970. https://doi.org/10.1016/j.jece.2018.05.054.Search in Google Scholar

9. Elhalawany, N., El-Naggar, M. E., Elsayed, A., Wassel, A. R., El-Aref, A. T., Abd Elghaffar, M. A. Polyaniline/zinc/aluminum nanocomposites for multifunctional smart cotton fabrics. Mater. Chem. Phys. 2020, 249, 123210. https://doi.org/10.1016/j.matchemphys.2020.123210.Search in Google Scholar

10. Saini, M., Sheoran, N., Shukla, R., Kumar, T., Singh, S. K. A comparative study of structural, thermal and conducting properties of polyaniline, polypyrrole and poly (Ani-co-Py) copolymer. MRS Adv. 2019, 4, 1639–1648. https://doi.org/10.1557/adv.2019.249.Search in Google Scholar

11. Kolcu, F., Kaya, I. A study of the chemical and the enzyme-catalyzed oxidative polymerization of aromatic diamine bearing chlor substituents, pursuant to structural, thermal and photophysical properties. Eur. Polym. J. 2020, 133, 109767. https://doi.org/10.1016/j.eurpolymj.2020.109767.Search in Google Scholar

12. Peng, H., Ma, G., Sun, K., Mu, J., Zhang, Z., Lei, Z. Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors. J. Phys. Chem. C 2014, 118, 29507–29516. https://doi.org/10.1021/jp508684t.Search in Google Scholar

13. Al Jahdaly, B. A., Elsadek, M. F., Ahmed, B. M., Farahat, M. F., Taher, M. M., Khalil, A. M. Outstanding graphene quantum dots from carbon source for biomedical and corrosion inhibition applications: a review. Sustainability 2021, 13, 2127. https://doi.org/10.3390/su13042127.Search in Google Scholar

14. Zeid, M. M. A., Shaltout, N. A., Khalil, A. M., El Miligy, A. A. Effect of different coagents on physico-chemical properties of electron beam cured NBR/HDPE composites reinforced with HAF carbon black. Polym. Compos. 2008, 29, 1321–1327. https://doi.org/10.1002/pc.20515.Search in Google Scholar

15. Christy, P. A., Peter, A. J., Arumugam, S., Lee, C. W., Prakash, P. S. Superparamagnetic behavior of sulfonated fullerene (C60SO3H): synthesis and characterization for biomedical applications. Mater. Chem. Phys. 2020, 240, 122207. https://doi.org/10.1016/j.matchemphys.2019.122207.Search in Google Scholar

16. Khalil, A. M., Michely, L., Pires, R., Bastide, S., Jlassi, K., Ammar, S., Jaziri, M., Chehimi, M. M. Copper/nickel-decorated olive pit biochar: one pot solid state synthesis for environmental remediation. Appl. Sci. 2021, 11, 8513. https://doi.org/10.3390/app11188513.Search in Google Scholar

17. Abdelhamid, A. E., Khalil, A. M. Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination. J. Macromol. Sci. Part A. 2019, 56, 153–161. https://doi.org/10.1080/10601325.2018.1559698.Search in Google Scholar

18. Jaidev, R. S. Poly (p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J. Mater. Chem. 2012, 22, 18775–18783. https://doi.org/10.1039/c2jm33627h.Search in Google Scholar

19. Amani, J., Maleki, M., Khoshroo, A., Sobhani-Nasab, A., Rahimi-Nasrabadi, M. An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem. 2018, 548, 53–59. https://doi.org/10.1016/j.ab.2018.02.024.Search in Google Scholar PubMed

20. Mangukiya, S., Prajapati, S., Kumar, S., Aswal, V. K., Murthy, C. N. Polysulfone-based composite membranes with functionalized carbon nanotubes show controlled porosity and enhanced electrical conductivity. J. Appl. Polym. Sci. 2016, 133, 43778. https://doi.org/10.1002/app.43778.Search in Google Scholar

21. Fennimore, A. M., Yuzvinsky, T. D., Han, W. Q., Fuhrer, M. S., Cumings, J., Zetti, A. Rotational actuators based on carbon nanotubes. Nature 2003, 424, 408–410. https://doi.org/10.1038/nature01823.Search in Google Scholar

22. Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C., Yan, Y., Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C., Yan, Y. Nano Lett. 2004, 4, 345–348. https://doi.org/10.1021/nl034952p.Search in Google Scholar

23. Nayak, L., Rahaman, M., Khastgir, D., Chaki, T. K. Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites. Polym. Bull. 2011, 67, 1029–1044. https://doi.org/10.1007/s00289-011-0479-y.Search in Google Scholar

24. Yin, J., Zhu, G., Deng, B. Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J. Membr. Sci. 2013, 437, 237–248. https://doi.org/10.1016/j.memsci.2013.03.021.Search in Google Scholar

25. Bensghaier, A., Mousli, F., Lamouri, A., Postnikov, P. S., Chehimi, M. M. The molecular and macromolecular level of carbon nanotube modification via diazonium chemistry: emphasis on the 2010s years. Chem. Afr. 2020, 3, 535–569. https://doi.org/10.1007/s42250-020-00144-5.Search in Google Scholar

26. Quan, D., Mischo, C., Li, X., Scarselli, G., Ivankovic, A., Murphy, N. Improving the electrical conductivity and fracture toughness of carbon fibre/epoxy composites by interleaving MWCNT-doped thermoplastic veils. Compos. Sci. Technol. 2019, 182, 107775. https://doi.org/10.1016/j.compscitech.2019.107775.Search in Google Scholar

27. Begum, S., Ullah, H., Kausar, A., Siddiq, M., Aleem, M. A. Fabrication of epoxy functionalized MWCNTs reinforced PVDF nanocomposites with high dielectric permittivity, low dielectric loss and high electrical conductivity. Compos. Sci. Technol. 2018, 167, 497–506. https://doi.org/10.1016/j.compscitech.2018.08.041.Search in Google Scholar

28. Husain, A., Ahmad, S., Mohammad, F. Electrical conductivity and ammonia sensing studies on polythiophene/MWCNTs nanocomposites. Materialia 2020, 14, 100868. https://doi.org/10.1016/j.mtla.2020.100868.Search in Google Scholar

29. Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Kelley Bradley, R., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Young-Seok, S., Randall Lee, T., Daniel, T. C., Richard, E. S. Fullerene pipes. Science 1998, 280, 1253–1256. https://doi.org/10.1126/science.280.5367.1253.Search in Google Scholar

30. Prokes, J., Stejskal, J., Krivka, I., Tobolkova, E. Aniline-phenylenediamine copolymers. Synth. Met. 1999, 102, 1205–1206.10.1016/S0379-6779(98)01223-5Search in Google Scholar

31. Pham, Q. L., Haldorai, Y., Nguyen, V. H., Tuma, D., Shim, J. J. Facile synthesis of poly (p-phenylenediamine)/MWCNT nanocomposites and characterization for investigation of structural effects of carbon nanotubes. Bull. Mater. Sci. 2011, 34, 37–43. https://doi.org/10.1007/s12034-011-0049-9.Search in Google Scholar

32. Meng, Y., Zhang, L., Chai, L., Yu, W., Wang, T., Dai, S., Wang, H. Facile and large-scale synthesis of poly (m-phenylenediamine) nanobelts with high surface area and superior dye adsorption ability. RSC Adv. 2014, 4, 45244–45250. https://doi.org/10.1039/c4ra06553k.Search in Google Scholar

33. Hu, C. Y., Xu, Y. J., Duo, S. W., Zhang, R. F., Li, M. S. Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J. Chin. Chem. Soc. 2009, 56, 234–239. https://doi.org/10.1002/jccs.200900033.Search in Google Scholar

34. Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J., Lee, W. R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. https://doi.org/10.1016/j.jiec.2014.03.022.Search in Google Scholar

35. Haldorai, Y., Lyoo, W. S., Shim, J. J. Poly (aniline-co-p-phenylenediamine)/MWCNT nanocomposites via in situ microemulsion: synthesis and characterization. Colloid Polym. Sci. 2009, 287, 1273–1280. https://doi.org/10.1007/s00396-009-2088-y.Search in Google Scholar

36. Zhou, T. Y., Tsui, G. C. P., Liang, J. Z., Zou, S. Y., Tang, C. Y., Miskovic-Stankovic, V. Thermal properties and thermal stability of PP/MWCNT composites. Compos. B Eng. 2016, 90, 107–114. https://doi.org/10.1016/j.compositesb.2015.12.013.Search in Google Scholar

37. Khalil, A. M., Hassan, M. L., Ward, A. A. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydr. Polym. 2017, 157, 503–511. https://doi.org/10.1016/j.carbpol.2016.10.008.Search in Google Scholar PubMed

38. Saied, M. A., Ward, A. A. Physical, dielectric and biodegradation studies of PVC/silica nanocomposites based on traditional and environmentally friendly plasticizers. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 035003. https://doi.org/10.1088/2043-6254/ab9d17.Search in Google Scholar

39. Elashmawi, I. S., Gaabour, L. H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015, 5, 105–110. https://doi.org/10.1016/j.rinp.2015.04.005.Search in Google Scholar

40. Sadek, E. M., El-Nashar, D. E., Ward, A. A., Ahmed, S. M. Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J. Polym. Res. 2018, 25, 249. https://doi.org/10.1007/s10965-018-1641-0.Search in Google Scholar

41. Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., Cavaille, J. Y. Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes. Chem. Phys. Lett. 2007, 444, 1–8. https://doi.org/10.1016/j.cplett.2007.06.107.Search in Google Scholar

42. Li, J., Ma, P. C., Chow, W. S., To, C. K., Tang, B. Z., Kim, J. K. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 2007, 17, 3207–3215. https://doi.org/10.1002/adfm.200700065.Search in Google Scholar

43. Colak, N., Sukmen, B. Doping of chemically synthesized polyaniline. Des. Monomers Polym. 2000, 3, 181–189. https://doi.org/10.1163/156855500300142870.Search in Google Scholar

Received: 2021-06-14
Revised: 2022-01-05
Accepted: 2022-02-07
Published Online: 2022-03-07
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0190/pdf?lang=en
Scroll to top button