Abstract
Extensional mixing elements (EMEs) that impose extension-dominated flow via stationary single-plane or double-plane hyperbolic converging-diverging channels were previously designed for twin-screw and single-screw extruders (TSE and SSE, respectively). In a recently published work by the authors, reactive extrusion was performed on PS/PA6 polymer blends TSE using EMEs and a crystalline phase transition of the minor phase in these droplets was observed as the size of droplet decreases from micron to submicron. Herein, we expand upon this work to SSE and study: a) The ability of the EMEs to improve dispersive mixing in the same blends; b) Assess the possibility of achieving the same crystalline phase transition in SSEs. The final blends were characterized by DSC, rheologically and morphologically via SEM, and the results show that while EME-based SSE leads to much improved mixing, better than non-EME TSE, the reduction in size of the PA6 disperse phase is not enough to induce the phase transition observed in EME-based TSE.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chiang, W., Yang, W., Pukánszky, B. Polym. Eng. Sci. 1992, 32, 641–648; https://doi.org/10.1002/pen.760321002.Suche in Google Scholar
2. Katoh, Y., Okamoto, M. Polymer 2009, 50, 4718–4726; https://doi.org/10.1016/j.polymer.2009.07.019.Suche in Google Scholar
3. Coleman, J. N., Khan, U., Blau, W. J., Gun’ko, Y. K. Carbon 2006, 44, 1624–1652; https://doi.org/10.1016/j.carbon.2006.02.038.Suche in Google Scholar
4. Meng, Q., Hu, J. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1661–1672; https://doi.org/10.1016/j.compositesa.2009.08.011.Suche in Google Scholar
5. Subramanian, P. M., Mehra, V. Polym. Eng. Sci. 1987, 27, 663–668; https://doi.org/10.1002/pen.760270910.Suche in Google Scholar
6. Liu, T. X., Liu, Z. H., Ma, K. X., Shen, L., Zeng, K. Y., He, C. B. Compos. Sci. Technol. 2003, 63, 331–337; https://doi.org/10.1016/S0266-3538(02)00226-9.Suche in Google Scholar
7. Filippone, G., Dintcheva, N. T., La Mantia, F. P., Acierno, D. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 600–609; https://doi.org/10.1002/polb.21928.Suche in Google Scholar
8. Crosby, A. J., Lee, J. Y. Polym. Rev. 2007, 47, 217–229; https://doi.org/10.1080/15583720701271278.Suche in Google Scholar
9. Santana, R. M. C., Manrich, S. J. Appl. Polym. Sci. 2003, 87, 747–751; https://doi.org/10.1002/app.11404.Suche in Google Scholar
10. Koning, C., Van Duin, M., Pagnoulle, C., Jerome, R. Prog. Polym. Sci. 1998, 23, 707–757; https://doi.org/10.1016/S0079-6700(97)00054-3.Suche in Google Scholar
11. El-Sabbagh, S. H. J. Appl. Polym. Sci. 2003, 90, 1–11; https://doi.org/10.1002/app.12345.Suche in Google Scholar
12. Porter, R. S., Wang, L. H. Polymer 1992, 33, 2019–2030; https://doi.org/10.1016/0032-3861(92)90866-U.Suche in Google Scholar
13. Beniska, J., Sain, M. M., Hudec, I. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 1987, 28, 379–380.Suche in Google Scholar
14. Rim, P. B., Runt, J. P. Macromolecules 1984, 17, 1520–1526; https://doi.org/10.1021/ma00138a017.Suche in Google Scholar
15. Xanthos, M., Dagli, S. S. Polym. Eng. Sci. 1991, 31, 929–935; https://eprints.aston.ac.uk/9684/.10.1002/pen.760311302Suche in Google Scholar
16. Pandey, V., Maia, J. M. J. Appl. Polym. Sci. 2021, 138, 49716; https://doi.org/10.1002/app.49716.https://doi.org/10.1002/app.49716Suche in Google Scholar
17. Pandey, V., Chen, H., Ma, J., Maia, J. M. J. Appl. Polym. Sci. 2021, 138, 49765; https://doi.org/10.1002/app.49765.https://doi.org/10.1002/app.49765Suche in Google Scholar
18. Pandey, V., Maia, J. M. Polym. Eng. Sci. 2020, 60, 2390–2402; https://doi.org/10.1002/pen.25478.10.1002/pen.25478Suche in Google Scholar
19. Chen, H., Zhu, S., Maia, J. M. Polym. Eng. Sci. 2020, 5, 1019–1028; https://doi.org/10.1002/pen.25357.Suche in Google Scholar
20. Chen, H., Pandey, V., Carson, S., Maia, J. M. Inter. polym. proc. 2020, 35, 37–49; https://doi.org/10.3139/217.3857.Suche in Google Scholar
21. Carson, S. O., Covas, J. A., Maia, J. M. Adv. Polym. Technol. 2017, 36, 455–465; https://doi.org/10.1002/adv.21627.Suche in Google Scholar
22. Carson, S. O., Maia, J. M., Covas, J. A. Adv. Polym. Technol. 2018, 37, 167–175; https://doi.org/10.1002/adv.21653.Suche in Google Scholar
23. Vojdani, M., Giti, R., Dent, J. J. Dent. 2015, 16, 1–9. https://www.ncbi.nlm.nih.gov/pubmed/26106628%0A, https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4476124.Suche in Google Scholar
24. Xiang, F., Wu, J., Liu, L., Huang, T., Wang, Y., Chen, C., Peng, Y., Jiang, C., Zhou, Z. Polym. Adv. Technol. 2011, 22, 2533–2542; https://doi.org/10.1002/pat.1796.Suche in Google Scholar
25. Lau, W. J., Gray, S., Matsuura, T., Emadzadeh, D., Paul, J., Ismail, A. F. Water Res. 2015, 80, 306–324; https://doi.org/10.1016/j.watres.2015.04.037.Suche in Google Scholar
26. Chow, W. S., Mohd Ishak, Z. A. Express Polym. Lett. 2015, 9, 211–232; https://doi.org/10.3144/expresspolymlett.2015.22.Suche in Google Scholar
27. Wahit, M. U., Hassan, A., Rahmat, A. R., Lim, J. W., Ishak, Z. A. M. J. Reinforc. Plast. Compos. 2006, 25, 933–955; https://doi.org/10.1177/0731684406063529.Suche in Google Scholar
28. Aparna, S., Purnima, D., Adusumalli, R. B. Polym. Plast. Technol. Eng. 2017, 56, 617–634; https://doi.org/10.1080/03602559.2016.1233280.Suche in Google Scholar
29. Pillon, L. Z., Utracki, L. A. Polym. Eng. Sci. 1984, 24, 1300–1305; https://doi.org/10.1002/pen.760241706.Suche in Google Scholar
30. Utracki, L. A. Can. J. Chem. Eng. 2002, 80, 1008–1016; https://doi.org/10.1002/cjce.5450800601.Suche in Google Scholar
31. Liu, X., Wu, Q., Berglund, L. A. Polymer 2002, 43, 4967–4972; https://doi.org/10.1016/S0032-3861(02)00331-2.Suche in Google Scholar
32. Pepin, J., Miri, V., Lefebvre, J. M. Macromolecules 2016, 49, 564–573; https://doi.org/10.1021/acs.macromol.5b01701.Suche in Google Scholar
33. Dasgupta, S., Hammond, W. B., Goddard, W. A. J. Am. Chem. Soc. 1996, 118, 12291–12301; https://doi.org/10.1021/ja944125d.Suche in Google Scholar
34. Vasanthan, N., Murthy, N. S., Bray, R. G. Macromolecules 1998, 31, 8433–8435; https://doi.org/10.1021/ma980935o.Suche in Google Scholar
35. Liu, X., Wu, Q. Polymer 2002, 43, 1933–1936; https://doi.org/10.1016/S0032-3861(01)00759-5.Suche in Google Scholar
36. Khanna, Y. P. Macromolecules 1992, 25, 3298–3300; https://doi.org/10.1021/ma00038a043.Suche in Google Scholar
37. Ho, J. C., Wei, K. H. Macromolecules 2000, 33, 5181–5186; https://doi.org/10.1021/ma991702f.Suche in Google Scholar
38. Feldman, A. Y., Wachtel, E. G., Vaughan, B. M., Weinberg, A., Marom, G. Macromolecules 2006, 39, 4455–4459; https://doi.org/10.1021/ma060487h.Suche in Google Scholar
39. Biangardi, H. J. J. Macromol. Sci. Part B. 1990, 29, 139–153; https://doi.org/10.1080/00222349008245770.Suche in Google Scholar
40. Murthy, N. S., Curran, S. A., Aharoni, S. M., Minor, H. Macromolecules 1991, 24, 3215–3220; https://doi.org/10.1021/ma00011a027.Suche in Google Scholar
41. Ramesh, C., Keller, A., Eltink, S. J. E. A. Polymer 1994, 35, 5300–5308; https://doi.org/10.1016/0032-3861(94)90483-9.Suche in Google Scholar
42. Dong, L., Xiong, C., Wang, T., Liu, D., Lu, S., Wang, Y. J. Appl. Polym. Sci. 2004, 94, 432–439; https://doi.org/10.1002/app.20724.Suche in Google Scholar
43. Tseng, F. P., Tseng, C. R., Chang, F. C., Lin, J. J., Cheng, I. J. J. Polym. Res. 2005, 12, 439–447; https://doi.org/10.1007/s10965-004-1875-x.Suche in Google Scholar
44. Jamali, S., Paiva, M. C., Covas, J. A. Polym. Test. 2013, 32, 701–707; https://doi.org/10.1016/j.polymertesting.2013.03.005.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- A review on tribo-mechanical properties of micro- and nanoparticulate-filled nylon composites
- Determination of mechanical properties of two-phase and hybrid nanocomposites: experimental determination and multiscale modeling
- Polyurethane modified epoxy vitrimer and its stress relaxation behavior
- Preparation and assembly
- Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications
- Preparation and heat insulation of Gemini-halloysite aerogel/concrete composites
- Engineering and processing
- Improving dispersive mixing in compatibilized polystyrene/polyamide-6 blends via extension-dominated reactive single-screw extrusion
- Enhancing performances of hemp fiber/natural rubber composites via polyhydric hyperbranched polyester
- Water purification performance enhancement of PVC ultrafiltration membrane modified with tourmaline particles
Artikel in diesem Heft
- Frontmatter
- Material properties
- A review on tribo-mechanical properties of micro- and nanoparticulate-filled nylon composites
- Determination of mechanical properties of two-phase and hybrid nanocomposites: experimental determination and multiscale modeling
- Polyurethane modified epoxy vitrimer and its stress relaxation behavior
- Preparation and assembly
- Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications
- Preparation and heat insulation of Gemini-halloysite aerogel/concrete composites
- Engineering and processing
- Improving dispersive mixing in compatibilized polystyrene/polyamide-6 blends via extension-dominated reactive single-screw extrusion
- Enhancing performances of hemp fiber/natural rubber composites via polyhydric hyperbranched polyester
- Water purification performance enhancement of PVC ultrafiltration membrane modified with tourmaline particles