Abstract
Micron-sized magnetic particles currently find a wide range of applications in many areas including biotechnology, biochemistry, colloid sciences and medicine. In this study, magnetic poly(glycidyl methacrylate) microparticles were synthesized by providing a polymerization around Fe(II)-Ni(II) magnetic double salt. Adsorption of lysozyme protein from aqueous systems was studied with these particles. Adsorption studies were performed with changing pH values, variable amount of adsorbent, different interaction times and lysozyme amounts. The adsorption capacity of the particles was investigated, and a value of about 95.6 mg lysozyme/g microparticle was obtained. The enzyme activity of the immobilized lysozyme was examined and found to be more stable and reusable compared to the free enzyme. The immobilized enzyme still showed 80% activity after five runs and managed to maintain 78% of its initial activity at the end of 60 days. Besides, in the antimicrobial analysis study for six different microorganisms, the minimum inhibitory concentration value of lysozyme immobilized particles was calculated as 125 μg/mL like free lysozyme. Finally, the adsorption interaction was found to be compatible with the Langmuir isotherm model. Accordingly, it can be said that magnetic poly(GMA) microparticles are suitable materials for lysozyme immobilization and immobilized lysozyme can be used in biotechnological studies.
Acknowledgments
Because of their contributions to the study, we would like to cordially thank Prof. Dr. Dursun Ali Köse (Faculty of Art and Science, Department of Chemistry, Hitit University) and Prof. Dr. Nevzat Şahin (Faculty of Art and Science, Department of Biology, Ondokuz Mayıs University).
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mokadem, Z., Saidi-Besbes, S., Lebaz, N., Elaissari, A. React. Funct. Polym. 2020, 155, 104693; https://doi.org/10.1016/j.reactfunctpolym.2020.104693.Search in Google Scholar
2. Dinali, L. A. F., de Oliveira, H. L., Teixeira, L. S., da Silva, A. T. M., D’Oliveira, K. A., Cuin, A., Borges, K. B. Microchem. J. 2020, 154, 104648; https://doi.org/10.1016/j.microc.2020.104648.Search in Google Scholar
3. Wichaita, W., Polpanich, D., Kaewsaneha, C., Jangpatarapongsa, K., Tangboriboonrat, P. Colloids Surf. B Biointerfaces 2019, 184, 110557; https://doi.org/10.1016/j.colsurfb.2019.110557.Search in Google Scholar PubMed
4. Fang, L., Miao, Y., Wei, D., Zhang, Y., Zhou, Y. Chemosphere 2020, 262, 128032; https://doi.org/10.1016/j.chemosphere.2020.128032.Search in Google Scholar PubMed
5. Tang, F., Ma, N., Tong, L., He, F., Li, L. Langmuir 2011, 28, 883–888; https://doi.org/10.1021/la203704j.Search in Google Scholar PubMed
6. Wang, H., Wang, R., Wang, L., Tian, X. Colloid. Surface. Physicochem. Eng. Aspect. 2011, 384, 624–629; https://doi.org/10.1016/j.colsurfa.2011.05.031.Search in Google Scholar
7. Sacanna, S., Philipse, A. Langmuir 2006, 22, 10209–10216; https://doi.org/10.1021/la0616505.Search in Google Scholar PubMed
8. Li, Y., Ding, M. J., Wang, S., Wang, R. Y., Wu, X. L., Wen, T. T., Yuan, L. H., Dai, P., Lin, Y. H., Zhou, X. M. ACS Appl. Mater. Interfaces 2011, 3, 3308–3315; https://doi.org/10.1021/am2007855.Search in Google Scholar PubMed
9. Kubo, T., Otsuka, K. Trac. Trends Anal. Chem. 2016, 81, 102–109; https://doi.org/10.1016/j.trac.2015.08.008.Search in Google Scholar
10. Sarkar, S., Gulati, K., Mishra, A., Poluri, K. M. Int. J. Biol. Macromol. 2020, 467–482; https://doi.org/10.1016/j.ijbiomac.2020.02.179.Search in Google Scholar PubMed
11. Sharma, M., Jaiswal, N., Kumar, D., Poluri, K. M. Biochem. J. 2019, 476, 613–628; https://doi.org/10.1042/bcj20180703.Search in Google Scholar PubMed
12. Kobayakawa, S., Nakai, Y., Akiyama, M., Komatsu, T. Chem. Eur J. 2017, 23, 5044–5050; https://doi.org/10.1002/chem.201605055.Search in Google Scholar PubMed
13. Alveroglu, E., İlker, N., Shah, M. T., Rajar, K., Gokceoren, A. T., Koc, K. Colloids Surf. B Biointerfaces 2019, 181, 981–988; https://doi.org/10.1016/j.colsurfb.2019.05.062.Search in Google Scholar PubMed
14. Flores-Rojas, G. G., Pino-Ramos, V. H., López-Saucedo, F., Concheiro, A., Alvarez-Lorenzo, C., Bucio, E. Eur. Polym. J. 2017, 95, 27–40; https://doi.org/10.1016/j.eurpolymj.2017.07.040.Search in Google Scholar
15. Kubiak-Ossowska, K., Cwieka, M., Kaczynska, A., Jachimska, B., Mulheran, P. A. Phys. Chem. Chem. Phys. 2015, 17, 24070–24077; https://doi.org/10.1039/c5cp03910j.Search in Google Scholar PubMed
16. Inanan, T., Tüzmen, N., Karipcin, F. Int. J. Biol. Macromol. 2018, 114, 812–820; https://doi.org/10.1016/j.ijbiomac.2018.04.006.Search in Google Scholar PubMed
17. Bayazidi, P., Almasi, H., Asl, A. K. Int. J. Biol. Macromol. 2018, 107, 2544–2551; https://doi.org/10.1016/j.ijbiomac.2017.10.137.Search in Google Scholar PubMed
18. Nartop, D., Yetim, N. K., Özkan, E. H., Sarı, N. J. Mol. Struct. 2020, 1200, 127039; https://doi.org/10.1016/j.molstruc.2019.127039.Search in Google Scholar
19. Li, Y., Zhang, C., Sun, Y. Chin. J. Chem. Eng. 2020, 28, 242–248; https://doi.org/10.1016/j.cjche.2019.03.002.Search in Google Scholar
20. Ward, K., Taylor, A., Mohammed, A., Stuckey, D. C. Adv. Colloid Interface Sci. 2020, 275, 102079; https://doi.org/10.1016/j.cis.2019.102079.Search in Google Scholar PubMed
21. Zhang, H., Li, H., Wang, K., Xia, Q., Zhou, D. Microporous Mesoporous Mater. 2020, 298, 110098; https://doi.org/10.1016/j.micromeso.2020.110098.Search in Google Scholar
22. Erol, B., Erol, K., Gökmeşe, E. Process Biochem. 2019, 83, 104–113; https://doi.org/10.1016/j.procbio.2019.05.009.Search in Google Scholar
23. Erol, K., Cebeci, B. K., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743; https://doi.org/10.1016/j.ijbiomac.2018.11.121.Search in Google Scholar PubMed
24. Erol, K. J. Turk. Chem. Soc. Sec. A: Chem. 2017, 4, 133–148.10.18596/jotcsa.287321Search in Google Scholar
25. Jesionowski, T., Zdarta, J., Krajewska, B. Adsorption 2014, 20, 801–821; https://doi.org/10.1007/s10450-014-9623-y.Search in Google Scholar
26. Xu, W., Lou, Y., Xu, B., Li, Y., Xiong, Y., Jing, J. Int. J. Biol. Macromol. 2018, 120, 2175–2179; https://doi.org/10.1016/j.ijbiomac.2018.09.041.Search in Google Scholar PubMed
27. Erol, K., Köse, K., Uzun, L., Say, R., Denizli, A. Colloids Surf. B Biointerfaces 2016, 146, 567–576; https://doi.org/10.1016/j.colsurfb.2016.06.060.Search in Google Scholar PubMed
28. Forov, Y., Paulus, M., Dogan, S., Salmen, P., Weis, C., Gahlmann, T., Behrendt, A., Albers, C., Elbers, M., Schnettger, W. Langmuir 2018, 34, 5403–5408; https://doi.org/10.1021/acs.langmuir.8b00280.Search in Google Scholar PubMed
29. Lin, Z. A., Zheng, J. N., Lin, F., Zhang, L., Cai, Z., Chen, G.-N. J. Mater. Chem. 2011, 21, 518–524; https://doi.org/10.1039/c0jm02300k.Search in Google Scholar
30. Orhan, H., Evli, S., Dabanca, M. B., Başbülbül, G., Uygun, M., Uygun, D. A. Mater. Sci. Eng. C 2019, 94, 558–564; https://doi.org/10.1016/j.msec.2018.10.003.Search in Google Scholar PubMed
31. Köse, K. J. Turk. Chem. Soc. Sec. A: Chem. 2016, 3, 185–204; https://doi.org/10.18596/jotcsa.74979.Search in Google Scholar
32. Bilgin, E., Erol, K., Köse, K., Köse, D. A. Environ. Sci. Pollut. Control Ser. 2018, 25, 27614–27627; https://doi.org/10.1007/s11356-018-2784-6.Search in Google Scholar PubMed
33. Jing, M., Song, W., Liu, R. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 164, 103–109.10.1016/j.saa.2016.04.008Search in Google Scholar PubMed
34. Ghosh, S., Pandey, N. K., Bhattacharya, S., Roy, A., Nagy, N. V., Dasgupta, S. Int. J. Biol. Macromol. 2015, 76, 1–9; https://doi.org/10.1016/j.ijbiomac.2015.02.014.Search in Google Scholar PubMed
35. Erol, K., Köse, K., Köse, D. A., Sızır, Ü., Tosun Satır, İ., Uzun, L. Desalin. Water Treat. 2016, 57, 9307–9317; https://doi.org/10.1080/19443994.2015.1030708.Search in Google Scholar
36. Köse, K., Erol, K., Emniyet, A. A., Köse, D. A., Avcı, G. A., Uzun, L. Appl. Biochem. Biotechnol. 2015, 177, 1025–1039; https://doi.org/10.1007/s12010-015-1794-9.Search in Google Scholar PubMed
37. Altıntaş, E. B., Denizli, A. Int. J. Biol. Macromol. 2006, 38, 99–106.10.1016/j.ijbiomac.2006.01.011Search in Google Scholar PubMed
38. Lawal, A., Obaleye, J., Adediji, J., Amolegbe, S., Bamigboye, M., Yunus-Issa, M. J. Appl. Sci. Environ. Manag. 2014, 18, 205–208; https://doi.org/10.4314/jasem.v18i2.8.Search in Google Scholar
39. Ji, Y. J. Food Eng. 2020, 285, 110088; https://doi.org/10.1016/j.jfoodeng.2020.110088.Search in Google Scholar
40. Ellis, A. E. Techniques in Fish Immunology; Stolen, J. S., Fletcher, T. C., Anderson, D. P., Roberson, B. S., Mulswink, W. B., Eds., SOS Publications: Fair Haven, New Jersey, USA, 1996; p. 101.Search in Google Scholar
41. Thornsberry, C. Lab. Med. 2016, 14, 549–553.10.1093/labmed/14.9.549Search in Google Scholar
42. Erol, K., Uzunoglu, A., Köse, K., Sarıca, B., Avcı, E., Köse, D. A. J. Chromatogr. B 2018, 1081, 1–7; https://doi.org/10.1016/j.jchromb.2018.02.017.Search in Google Scholar PubMed
43. Erol, K., Köse, K., Güngüneş, H., Köse, D. A. J. Mol. Struct. 2017, 1130, 753–759; https://doi.org/10.1016/j.molstruc.2016.11.004.Search in Google Scholar
44. Elmogy, M., Bassal, T. T., Yousef, H. A., Dorrah, M. A., Mohamed, A. A., Duvic, B. J. Insect Sci. 2015, 15, 57; https://doi.org/10.1093/jisesa/iev038.Search in Google Scholar PubMed PubMed Central
45. Köse, K., Erol, K., Köse, D. A. Adsorption 2020, 26, 329–337, https://doi.org/10.1007%2Fs10450-020-00212-9.10.1007/s10450-020-00212-9Search in Google Scholar
46. Harrison, M. J., Burton, N. A., Hillier, I. H. J. Am. Chem. Soc. 1997, 119, 12285–12291; https://doi.org/10.1021/ja9711472.Search in Google Scholar
47. Park, J. M., Kim, M., Park, H.-S., Jang, A., Min, J., Kim, Y. H. Int. J. Biol. Macromol. 2013, 54, 37–43; https://doi.org/10.1016/j.ijbiomac.2012.11.025.Search in Google Scholar PubMed
48. Yılmaz, F., Bereli, N., Yavuz, H., Denizli, A. Biochem. Eng. J. 2009, 43, 272–279.10.1016/j.bej.2008.10.009Search in Google Scholar
49. Xue, F., Chen, Q., Li, Y., Liu, E., Li, D. Enzym. Microb. Technol. 2019, 131, 109425; https://doi.org/10.1016/j.enzmictec.2019.109425.Search in Google Scholar PubMed
50. Lian, Z. X., Ma, Z. S., Wei, J., Liu, H. Process Biochem. 2012, 47, 201–208; https://doi.org/10.1016/j.procbio.2011.10.031.Search in Google Scholar
51. Deng, Y., Li, J., Pu, Y., Chen, Y., Zhao, J., Tang, J. React. Funct. Polym. 2016, 103, 92–98; https://doi.org/10.1016/j.reactfunctpolym.2016.04.007.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0191).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Thermoelastic characterization of carbon nanotube reinforced PDMS elastomer
- Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends
- The effects of morphological variation and polymer/polymer interface on the tensile modulus of binary polymer blends: a modeling approach
- Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite
- Preparation and assembly
- Elaboration and characterization of multilayer polymeric membranes: effect of the chemical nature of polymers
- Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array
- Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization
- Engineering and processing
- Influence of low-fracture-fiber mechanism on fiber/melt-flow behavior and tensile properties of ultra-long-glass-fiber-reinforced polypropylene composites injection molding
- Bilayer PMMA antireflective coatings via microphase separation and MAPLE
Articles in the same Issue
- Frontmatter
- Material properties
- Thermoelastic characterization of carbon nanotube reinforced PDMS elastomer
- Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends
- The effects of morphological variation and polymer/polymer interface on the tensile modulus of binary polymer blends: a modeling approach
- Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite
- Preparation and assembly
- Elaboration and characterization of multilayer polymeric membranes: effect of the chemical nature of polymers
- Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array
- Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization
- Engineering and processing
- Influence of low-fracture-fiber mechanism on fiber/melt-flow behavior and tensile properties of ultra-long-glass-fiber-reinforced polypropylene composites injection molding
- Bilayer PMMA antireflective coatings via microphase separation and MAPLE