Abstract
The main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Enescu, D., Cerqueira, M. A., Fucinos, P., Pastrana, L. M. Food Chem. Toxicol. 2019, 35, 110814–110838; https://doi.org/10.1016/j.fct.2019.110814.Search in Google Scholar PubMed
2. Kurek, M., Ščetar, M., Voilley, A., Galić, K., Debeaufort, F. J. Membr. Sci. 2012, 403–404, 162–168; https://doi.org/10.1016/j.memsci.2012.02.037.Search in Google Scholar
3. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V. Compr. Rev. Food Sci. F 2018, 17, 165–199; https://doi.org/10.1111/1541-4337.12322.Search in Google Scholar PubMed
4. Ahmed, J., Mulla, M. Z., Arfat, Y. A. Food Contr. 2016, 69, 196–204; https://doi.org/10.1016/j.foodcont.2016.05.013.Search in Google Scholar
5. Mihindukulasuriya, S. D. F., Lim, L. T. Trends Food Sci. Technol. 2014, 40, 149–167; https://doi.org/10.1016/j.tifs.2014.09.009.Search in Google Scholar
6. Honarvar, Z., Hadian, Z., Mashayekh, M. Electron. Physician 2016, 8, 2531–2538; https://doi.org/10.19082/2531.Search in Google Scholar PubMed PubMed Central
7. Swaroop, C., Shukla, M. Compos. Part A-Appl. S 2019, 124, 105482–105491; https://doi.org/10.1016/j.compositesa.2019.105482.Search in Google Scholar
8. Garcia, C. V., Shin, G. H., Kim, J. T. Trends Food Sci. Technol. 2018, 82, 21–31; https://doi.org/10.1016/j.tifs.2018.09.021.Search in Google Scholar
9. Majid, I., Nayik, G. A., Dar, S. M., Nanda, V. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462; https://doi.org/10.1016/j.jssas.2016.11.003.Search in Google Scholar
10. Thakur, V. K., Thakur, M. K. Carbohydr. Polym. 2014, 109, 102–117; https://doi.org/10.1016/j.carbpol.2014.03.039.Search in Google Scholar PubMed
11. Thakur, V. K., Thakur, M. K., Gupta, R. K. Int. J. Polym. Anal. Char. 2014, 19, 256–271; https://doi.org/10.1080/1023666x.2014.880016.Search in Google Scholar
12. Thakur, V. K., Thakur, M. K. Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain. Chem. Eng. 2014, 2, 2637–2652; https://doi.org/10.1021/sc500634p.Search in Google Scholar
13. Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., Thakur, V. K. Int. J. Biol. Macromol. 2015, 79, 449–458; https://doi.org/10.1016/j.ijbiomac.2015.05.013.Search in Google Scholar
14. Gupta, A. P., Kumar, V. Eur. Polym. J. 2007, 43, 4053–4074; https://doi.org/10.1016/j.eurpolymj.2007.06.045.Search in Google Scholar
15. Lim, L. T., Auras, R., Rubino, M. Prog. Polym. Sci. 2008, 33, 820–852; https://doi.org/10.1016/j.progpolymsci.2008.05.004.Search in Google Scholar
16. Lunt, J. Polym. Degrad. Stabil. 1998, 59, 145–152; https://doi.org/10.1016/s0141-3910(97)00148-1.Search in Google Scholar
17. Farah, S., Anderson, D. G., Langer, R. Adv. Drug Deliv. Rev. 2016, 107, 367–392; https://doi.org/10.1016/j.addr.2016.06.012.Search in Google Scholar
18. Garlotta, D. J. Polym. Environ. 2001, 9, 63–84; https://doi.org/10.1023/a:1020200822435.10.1023/A:1020200822435Search in Google Scholar
19. Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J., Ladu, B. N., Pariza, M. W. Food Chem. Toxicol. 1995, 33, 273–356 1995; https://doi.org/10.1016/0278-6915(94)00145-e.Search in Google Scholar
20. Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., Filho, R. M. Biotechnol. Adv. 2012, 30, 321–328; https://doi.org/10.1016/j.biotechadv.2011.06.019.Search in Google Scholar PubMed
21. Rasal, R. M., Janorkar, A. V., Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338–356; https://doi.org/10.1016/j.progpolymsci.2009.12.003.Search in Google Scholar
22. Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., Desobry, S. J. Food Eng. 2012, 110, 380–389; https://doi.org/10.1016/j.jfoodeng.2011.12.034.Search in Google Scholar
23. Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. Compos. Sci. Technol. 2010, 70, 1742–1747; https://doi.org/10.1016/j.compscitech.2010.07.005.Search in Google Scholar
24. Benhacine, F., Hadj-Hamou, A. S., Habi, A., Grohens, Y. Int. Polym. Process. 2015, 30, 511–521; https://doi.org/10.3139/217.3087.Search in Google Scholar
25. Fortunati, E., Rinaldi, S., Peltzer, M., Bloise, N., Visai, L., Armentano, I., Jiménezc, A., Latterini, L., Kenny, J. M. Carbohydr. Polym. 2014, 101, 1122–1133; https://doi.org/10.1016/j.carbpol.2013.10.055.Search in Google Scholar PubMed
26. Gao, Y., Picot, O. T., Bilotti, E., Peijs, T. Eur. Polym. J. 2017, 86, 117–131; https://doi.org/10.1016/j.eurpolymj.2016.10.045.Search in Google Scholar
27. Therias, S., Larche, J. F., Bussiere, P. O., Gardette, J. L., Murariu, M., Dubois, P. Biomacromolecules 2012, 13, 3283–3291; https://doi.org/10.1021/bm301071w.Search in Google Scholar PubMed
28. Marra, A., Silvestre, C., Duraccio, D., Cimmino, S. Int. J. Biol. Macromol. 2016, 88, 254–262; https://doi.org/10.1016/j.ijbiomac.2016.03.039.Search in Google Scholar PubMed
29. Youssef, A. M., El-Sayed, S. M. Carbohydr. Polym. 2018, 193, 19–27; https://doi.org/10.1016/j.carbpol.2018.03.088.Search in Google Scholar PubMed
30. Zaidi, L., Kaci, M., Bruzaud, S., Bourmaud, A., Grohens, Y. Polym. Degrad. Stabil. 2010, 95, 1751–1758; https://doi.org/10.1016/j.polymdegradstab.2010.05.014.Search in Google Scholar
31. Djalila, A., Serier, A. J. Macromol. Sci. 2018, 55, 11–16; https://doi.org/10.1080/10601325.2017.1387482.Search in Google Scholar
32. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashecnikova, I., Khalyavka, T., Baran, J. Appl. Surf. Sci. 2003, 214, 222–231; https://doi.org/10.1016/s0169-4332(03)00346-5.Search in Google Scholar
33. Li, G. S., Li, L. P., Boerio-Goates, J., Woodfield, B. F. J. Am. Chem. Soc. 2005, 127, 8659–8666; https://doi.org/10.1021/ja050517g.Search in Google Scholar PubMed
34. Zhang, W., Li, C., Li, R. Nanosci. Nanotechnol. Asia 2015, 5, 8–14.10.2174/2210681205666150611191945Search in Google Scholar
35. Li, Q., Su, H. J., Tan, T. W. Biochem. Eng. J. 2008, 38, 212–218; https://doi.org/10.1016/j.bej.2007.07.007.Search in Google Scholar
36. Gravereau, P. Introduction à la pratique de la diffraction des rayons X par les poudres.3rd cycle. Diffraction des rayons X par les poudres. Université Bordeaux 2011, 1, 209. France.Search in Google Scholar
37. Auras, R., Lim, L. T., Selke, S. E. M., Tsuji, H. Poly (lactic acid): synthesis, structures, properties, processing, and applications; John Wiley & Sons: New Jersey, 2010.10.1002/9780470649848Search in Google Scholar
38. Ahmed, J., Arfat, Y. A., Castro-Aguirre, E., Auras, R. Int. J. Biol. Macromol. 2016, 86, 885–892; https://doi.org/10.1016/j.ijbiomac.2016.02.034.Search in Google Scholar PubMed
39. Jayaramudu, J., Das, K., Sonakshi, M., Siva Mohan Reddy, G., Aderibigbe, B., Sadiku, R., Sinha Ray, S. Int. J. Biol. Macromol. 2014, 64, 428–434; https://doi.org/10.1016/j.ijbiomac.2013.12.034.Search in Google Scholar PubMed
40. Xu, J., Li, L., Yan, Y., Wang, H., Wang, X., Fu, X., Li, G. J. Colloid Interface Sci. 2008, 318, 29–34; https://doi.org/10.1016/j.jcis.2007.10.004.Search in Google Scholar PubMed
41. Luo, Y., Wang, X., Wang, C., Hu, Y., Liu, M. Ceram. Inter. 2018, 44, 10412–10419; https://doi.org/10.1016/j.ceramint.2018.03.057.Search in Google Scholar
42. Kriven, W. M. Mater. Res. Soc. Symp. Proc. 2002, 702, U8.3.1–U8.3.7. https://doi:10.1557/proc-702-u8.3.1.10.1557/PROC-702-U8.3.1Search in Google Scholar
43. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P. Eur. Polym. J. 2013, 49, 3471–3482; https://doi.org/10.1016/j.eurpolymj.2013.08.005.Search in Google Scholar
44. Buzarovska, A. Polym. Plast. Technol. Eng. 2013, 52, 280–286; https://doi.org/10.1080/03602559.2012.751411.Search in Google Scholar
45. Zhang, H., Huang, J., Yang, L., Chen, R., Zou, W., Lin, X., Qu, J. RSC Adv. 2015, 5, 4639–4647; https://doi.org/10.1039/c4ra14538k.Search in Google Scholar
46. Yeh, J. T., Chai, W. L., Wu, C. S. Polym. Plast. Technol. Eng. 2008, 47, 887–894; https://doi.org/10.1080/03602550802189076.Search in Google Scholar
47. Luo, Y. B., Li, W. D., Wang, X., Xu, D. Y., Wang, Y. Z. Acta Mater. 2009, 57, 3182–3191; https://doi.org/10.1016/j.actamat.2009.03.022.Search in Google Scholar
48. Wang, W. W., Man, C. Z., Zhang, C. M., Jiang, L., Dan, Y., Nguyen, T. P. Polym. Degrad. Stabil. 2013, 98, 885–893; https://doi.org/10.1016/j.polymdegradstab.2013.01.003.Search in Google Scholar
49. Buzarovska, A., Grozdanov, A. J. Appl. Polym. Sci. 2012, 123, 2187–2193; https://doi.org/10.1002/app.34729.Search in Google Scholar
50. Fukushima, K., Tabuani, D., Camino, G. Mater. Sci. Eng. C 2009, 29, 1433–1441; https://doi.org/10.1016/j.msec.2008.11.005.Search in Google Scholar
51. Kopinke, F. D., Remmler, M., Mackenzie, K., Moder, M., Wachsen, O. Polym. Degrad. Stabil. 1996, 53, 329–342; https://doi.org/10.1016/0141-3910(96)00102-4.Search in Google Scholar
52. Fei, P., Fei, B., Yu, Y., Xiong, H., Tan, J. J. Appl. Polym. Sci. 2014, 131, 39846–39856; https://doi.org/10.1002/app.39846.Search in Google Scholar
53. Remili, C., Kaci, M., Benhamida, A., Bruzaud, S., Grohens, Y. Polym. Degrad. Stabil. 2011, 96, 1489–1496; https://doi.org/10.1016/j.polymdegradstab.2011.05.005.Search in Google Scholar
54. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., Hristova-Bogaerds, D. G. J. Polym. Sci. Pol. Phys. 2009, 47, 2247–2258; https://doi.org/10.1002/polb.21822.Search in Google Scholar
55. Roilo, D., Maestri, C. A., Scarpa, M., Bettotti, P., Checchetto, R. Surf. Coating. Technol. 2018, 343, 131–137; https://doi.org/10.1016/j.surfcoat.2017.10.015.Search in Google Scholar
56. El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., Dufresne, A. Carbohydr. Polym. 2015, 124, 337–346; https://doi.org/10.1016/j.carbpol.2015.01.076.Search in Google Scholar
57. Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E., O’Keefe, S. F. Food Packag. Shelf 2018, 17, 30–38; https://doi.org/10.1016/j.fpsl.2018.05.004.Search in Google Scholar
58. Bouakaz, B. S., Pillin, I., Habi, A., Grohens, Y. Appl. Clay Sci. 2015, 116, 69–77; https://doi.org/10.1016/j.clay.2015.08.017.Search in Google Scholar
59. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T. Appl. Environ. Microbiol. 1988, 54, 1330–1333; https://doi.org/10.1128/aem.54.6.1330-1333.1988.Search in Google Scholar
60. Gelover, S., Gómez, L. A., Reyes, K., Leal, M. T. Water Res. 2006, 40, 3274–3280; https://doi.org/10.1016/j.watres.2006.07.006.Search in Google Scholar
61. Saito, T., Iwase, T., Horie, J., Morioka, T. J. Photoc. Photobio. B 1992, 14, 369–379; https://doi.org/10.1016/1011-1344(92)85115-b.Search in Google Scholar
62. Załęska-Radziwiłł, M., Doskocz, N. Desalin. Water Treat. 2015, 57, 1573–1581.10.1080/19443994.2014.996015Search in Google Scholar
63. Doskocz, N., Affek, K., Załęska-Radziwiłł, M. E3S Web Conferences 2018, 44, 00033; https://doi.org/10.1051/e3sconf/20184400033.Search in Google Scholar
64. Jiang, W., Mashayekhi, H., Xing, B. Environ. Pollut. 2009, 157, 1619–1625; https://doi.org/10.1016/j.envpol.2008.12.025.Search in Google Scholar PubMed
65. Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Hussain, S. M., Grover, P. Toxicol. Vitro 2010, 24, 1871–1876; https://doi.org/10.1016/j.tiv.2010.07.004.Search in Google Scholar PubMed
66. Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., Mukherjee, A. J. Nanopart. Res. 2011, 13, 3287–3299; https://doi.org/10.1007/s11051-011-0243-0.Search in Google Scholar
67. Lian, Z., Zhang, Y., Zhao, Y. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153; https://doi.org/10.1016/j.ifset.2015.10.008.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin
Articles in the same Issue
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin