Home Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
Article
Licensed
Unlicensed Requires Authentication

Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films

  • Fatima Zohra Yakdoumi and Assia Siham Hadj-Hamou EMAIL logo
Published/Copyright: September 22, 2020
Become an author with De Gruyter Brill

Abstract

The main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.


Corresponding author: Assia Siham Hadj-Hamou, Laboratoire des Matériaux Polymères, Département de Chimie Macromoléculaire, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia, Alger 16111, Algeria, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Enescu, D., Cerqueira, M. A., Fucinos, P., Pastrana, L. M. Food Chem. Toxicol. 2019, 35, 110814–110838; https://doi.org/10.1016/j.fct.2019.110814.Search in Google Scholar PubMed

2. Kurek, M., Ščetar, M., Voilley, A., Galić, K., Debeaufort, F. J. Membr. Sci. 2012, 403–404, 162–168; https://doi.org/10.1016/j.memsci.2012.02.037.Search in Google Scholar

3. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V. Compr. Rev. Food Sci. F 2018, 17, 165–199; https://doi.org/10.1111/1541-4337.12322.Search in Google Scholar PubMed

4. Ahmed, J., Mulla, M. Z., Arfat, Y. A. Food Contr. 2016, 69, 196–204; https://doi.org/10.1016/j.foodcont.2016.05.013.Search in Google Scholar

5. Mihindukulasuriya, S. D. F., Lim, L. T. Trends Food Sci. Technol. 2014, 40, 149–167; https://doi.org/10.1016/j.tifs.2014.09.009.Search in Google Scholar

6. Honarvar, Z., Hadian, Z., Mashayekh, M. Electron. Physician 2016, 8, 2531–2538; https://doi.org/10.19082/2531.Search in Google Scholar PubMed PubMed Central

7. Swaroop, C., Shukla, M. Compos. Part A-Appl. S 2019, 124, 105482–105491; https://doi.org/10.1016/j.compositesa.2019.105482.Search in Google Scholar

8. Garcia, C. V., Shin, G. H., Kim, J. T. Trends Food Sci. Technol. 2018, 82, 21–31; https://doi.org/10.1016/j.tifs.2018.09.021.Search in Google Scholar

9. Majid, I., Nayik, G. A., Dar, S. M., Nanda, V. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462; https://doi.org/10.1016/j.jssas.2016.11.003.Search in Google Scholar

10. Thakur, V. K., Thakur, M. K. Carbohydr. Polym. 2014, 109, 102–117; https://doi.org/10.1016/j.carbpol.2014.03.039.Search in Google Scholar PubMed

11. Thakur, V. K., Thakur, M. K., Gupta, R. K. Int. J. Polym. Anal. Char. 2014, 19, 256–271; https://doi.org/10.1080/1023666x.2014.880016.Search in Google Scholar

12. Thakur, V. K., Thakur, M. K. Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain. Chem. Eng. 2014, 2, 2637–2652; https://doi.org/10.1021/sc500634p.Search in Google Scholar

13. Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., Thakur, V. K. Int. J. Biol. Macromol. 2015, 79, 449–458; https://doi.org/10.1016/j.ijbiomac.2015.05.013.Search in Google Scholar

14. Gupta, A. P., Kumar, V. Eur. Polym. J. 2007, 43, 4053–4074; https://doi.org/10.1016/j.eurpolymj.2007.06.045.Search in Google Scholar

15. Lim, L. T., Auras, R., Rubino, M. Prog. Polym. Sci. 2008, 33, 820–852; https://doi.org/10.1016/j.progpolymsci.2008.05.004.Search in Google Scholar

16. Lunt, J. Polym. Degrad. Stabil. 1998, 59, 145–152; https://doi.org/10.1016/s0141-3910(97)00148-1.Search in Google Scholar

17. Farah, S., Anderson, D. G., Langer, R. Adv. Drug Deliv. Rev. 2016, 107, 367–392; https://doi.org/10.1016/j.addr.2016.06.012.Search in Google Scholar

18. Garlotta, D. J. Polym. Environ. 2001, 9, 63–84; https://doi.org/10.1023/a:1020200822435.10.1023/A:1020200822435Search in Google Scholar

19. Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J., Ladu, B. N., Pariza, M. W. Food Chem. Toxicol. 1995, 33, 273–356 1995; https://doi.org/10.1016/0278-6915(94)00145-e.Search in Google Scholar

20. Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., Filho, R. M. Biotechnol. Adv. 2012, 30, 321–328; https://doi.org/10.1016/j.biotechadv.2011.06.019.Search in Google Scholar PubMed

21. Rasal, R. M., Janorkar, A. V., Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338–356; https://doi.org/10.1016/j.progpolymsci.2009.12.003.Search in Google Scholar

22. Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., Desobry, S. J. Food Eng. 2012, 110, 380–389; https://doi.org/10.1016/j.jfoodeng.2011.12.034.Search in Google Scholar

23. Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. Compos. Sci. Technol. 2010, 70, 1742–1747; https://doi.org/10.1016/j.compscitech.2010.07.005.Search in Google Scholar

24. Benhacine, F., Hadj-Hamou, A. S., Habi, A., Grohens, Y. Int. Polym. Process. 2015, 30, 511–521; https://doi.org/10.3139/217.3087.Search in Google Scholar

25. Fortunati, E., Rinaldi, S., Peltzer, M., Bloise, N., Visai, L., Armentano, I., Jiménezc, A., Latterini, L., Kenny, J. M. Carbohydr. Polym. 2014, 101, 1122–1133; https://doi.org/10.1016/j.carbpol.2013.10.055.Search in Google Scholar PubMed

26. Gao, Y., Picot, O. T., Bilotti, E., Peijs, T. Eur. Polym. J. 2017, 86, 117–131; https://doi.org/10.1016/j.eurpolymj.2016.10.045.Search in Google Scholar

27. Therias, S., Larche, J. F., Bussiere, P. O., Gardette, J. L., Murariu, M., Dubois, P. Biomacromolecules 2012, 13, 3283–3291; https://doi.org/10.1021/bm301071w.Search in Google Scholar PubMed

28. Marra, A., Silvestre, C., Duraccio, D., Cimmino, S. Int. J. Biol. Macromol. 2016, 88, 254–262; https://doi.org/10.1016/j.ijbiomac.2016.03.039.Search in Google Scholar PubMed

29. Youssef, A. M., El-Sayed, S. M. Carbohydr. Polym. 2018, 193, 19–27; https://doi.org/10.1016/j.carbpol.2018.03.088.Search in Google Scholar PubMed

30. Zaidi, L., Kaci, M., Bruzaud, S., Bourmaud, A., Grohens, Y. Polym. Degrad. Stabil. 2010, 95, 1751–1758; https://doi.org/10.1016/j.polymdegradstab.2010.05.014.Search in Google Scholar

31. Djalila, A., Serier, A. J. Macromol. Sci. 2018, 55, 11–16; https://doi.org/10.1080/10601325.2017.1387482.Search in Google Scholar

32. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashecnikova, I., Khalyavka, T., Baran, J. Appl. Surf. Sci. 2003, 214, 222–231; https://doi.org/10.1016/s0169-4332(03)00346-5.Search in Google Scholar

33. Li, G. S., Li, L. P., Boerio-Goates, J., Woodfield, B. F. J. Am. Chem. Soc. 2005, 127, 8659–8666; https://doi.org/10.1021/ja050517g.Search in Google Scholar PubMed

34. Zhang, W., Li, C., Li, R. Nanosci. Nanotechnol. Asia 2015, 5, 8–14.10.2174/2210681205666150611191945Search in Google Scholar

35. Li, Q., Su, H. J., Tan, T. W. Biochem. Eng. J. 2008, 38, 212–218; https://doi.org/10.1016/j.bej.2007.07.007.Search in Google Scholar

36. Gravereau, P. Introduction à la pratique de la diffraction des rayons X par les poudres.3rd cycle. Diffraction des rayons X par les poudres. Université Bordeaux 2011, 1, 209. France.Search in Google Scholar

37. Auras, R., Lim, L. T., Selke, S. E. M., Tsuji, H. Poly (lactic acid): synthesis, structures, properties, processing, and applications; John Wiley & Sons: New Jersey, 2010.10.1002/9780470649848Search in Google Scholar

38. Ahmed, J., Arfat, Y. A., Castro-Aguirre, E., Auras, R. Int. J. Biol. Macromol. 2016, 86, 885–892; https://doi.org/10.1016/j.ijbiomac.2016.02.034.Search in Google Scholar PubMed

39. Jayaramudu, J., Das, K., Sonakshi, M., Siva Mohan Reddy, G., Aderibigbe, B., Sadiku, R., Sinha Ray, S. Int. J. Biol. Macromol. 2014, 64, 428–434; https://doi.org/10.1016/j.ijbiomac.2013.12.034.Search in Google Scholar PubMed

40. Xu, J., Li, L., Yan, Y., Wang, H., Wang, X., Fu, X., Li, G. J. Colloid Interface Sci. 2008, 318, 29–34; https://doi.org/10.1016/j.jcis.2007.10.004.Search in Google Scholar PubMed

41. Luo, Y., Wang, X., Wang, C., Hu, Y., Liu, M. Ceram. Inter. 2018, 44, 10412–10419; https://doi.org/10.1016/j.ceramint.2018.03.057.Search in Google Scholar

42. Kriven, W. M. Mater. Res. Soc. Symp. Proc. 2002, 702, U8.3.1–U8.3.7. https://doi:10.1557/proc-702-u8.3.1.10.1557/PROC-702-U8.3.1Search in Google Scholar

43. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P. Eur. Polym. J. 2013, 49, 3471–3482; https://doi.org/10.1016/j.eurpolymj.2013.08.005.Search in Google Scholar

44. Buzarovska, A. Polym. Plast. Technol. Eng. 2013, 52, 280–286; https://doi.org/10.1080/03602559.2012.751411.Search in Google Scholar

45. Zhang, H., Huang, J., Yang, L., Chen, R., Zou, W., Lin, X., Qu, J. RSC Adv. 2015, 5, 4639–4647; https://doi.org/10.1039/c4ra14538k.Search in Google Scholar

46. Yeh, J. T., Chai, W. L., Wu, C. S. Polym. Plast. Technol. Eng. 2008, 47, 887–894; https://doi.org/10.1080/03602550802189076.Search in Google Scholar

47. Luo, Y. B., Li, W. D., Wang, X., Xu, D. Y., Wang, Y. Z. Acta Mater. 2009, 57, 3182–3191; https://doi.org/10.1016/j.actamat.2009.03.022.Search in Google Scholar

48. Wang, W. W., Man, C. Z., Zhang, C. M., Jiang, L., Dan, Y., Nguyen, T. P. Polym. Degrad. Stabil. 2013, 98, 885–893; https://doi.org/10.1016/j.polymdegradstab.2013.01.003.Search in Google Scholar

49. Buzarovska, A., Grozdanov, A. J. Appl. Polym. Sci. 2012, 123, 2187–2193; https://doi.org/10.1002/app.34729.Search in Google Scholar

50. Fukushima, K., Tabuani, D., Camino, G. Mater. Sci. Eng. C 2009, 29, 1433–1441; https://doi.org/10.1016/j.msec.2008.11.005.Search in Google Scholar

51. Kopinke, F. D., Remmler, M., Mackenzie, K., Moder, M., Wachsen, O. Polym. Degrad. Stabil. 1996, 53, 329–342; https://doi.org/10.1016/0141-3910(96)00102-4.Search in Google Scholar

52. Fei, P., Fei, B., Yu, Y., Xiong, H., Tan, J. J. Appl. Polym. Sci. 2014, 131, 39846–39856; https://doi.org/10.1002/app.39846.Search in Google Scholar

53. Remili, C., Kaci, M., Benhamida, A., Bruzaud, S., Grohens, Y. Polym. Degrad. Stabil. 2011, 96, 1489–1496; https://doi.org/10.1016/j.polymdegradstab.2011.05.005.Search in Google Scholar

54. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., Hristova-Bogaerds, D. G. J. Polym. Sci. Pol. Phys. 2009, 47, 2247–2258; https://doi.org/10.1002/polb.21822.Search in Google Scholar

55. Roilo, D., Maestri, C. A., Scarpa, M., Bettotti, P., Checchetto, R. Surf. Coating. Technol. 2018, 343, 131–137; https://doi.org/10.1016/j.surfcoat.2017.10.015.Search in Google Scholar

56. El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., Dufresne, A. Carbohydr. Polym. 2015, 124, 337–346; https://doi.org/10.1016/j.carbpol.2015.01.076.Search in Google Scholar

57. Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E., O’Keefe, S. F. Food Packag. Shelf 2018, 17, 30–38; https://doi.org/10.1016/j.fpsl.2018.05.004.Search in Google Scholar

58. Bouakaz, B. S., Pillin, I., Habi, A., Grohens, Y. Appl. Clay Sci. 2015, 116, 69–77; https://doi.org/10.1016/j.clay.2015.08.017.Search in Google Scholar

59. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T. Appl. Environ. Microbiol. 1988, 54, 1330–1333; https://doi.org/10.1128/aem.54.6.1330-1333.1988.Search in Google Scholar

60. Gelover, S., Gómez, L. A., Reyes, K., Leal, M. T. Water Res. 2006, 40, 3274–3280; https://doi.org/10.1016/j.watres.2006.07.006.Search in Google Scholar

61. Saito, T., Iwase, T., Horie, J., Morioka, T. J. Photoc. Photobio. B 1992, 14, 369–379; https://doi.org/10.1016/1011-1344(92)85115-b.Search in Google Scholar

62. Załęska-Radziwiłł, M., Doskocz, N. Desalin. Water Treat. 2015, 57, 1573–1581.10.1080/19443994.2014.996015Search in Google Scholar

63. Doskocz, N., Affek, K., Załęska-Radziwiłł, M. E3S Web Conferences 2018, 44, 00033; https://doi.org/10.1051/e3sconf/20184400033.Search in Google Scholar

64. Jiang, W., Mashayekhi, H., Xing, B. Environ. Pollut. 2009, 157, 1619–1625; https://doi.org/10.1016/j.envpol.2008.12.025.Search in Google Scholar PubMed

65. Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Hussain, S. M., Grover, P. Toxicol. Vitro 2010, 24, 1871–1876; https://doi.org/10.1016/j.tiv.2010.07.004.Search in Google Scholar PubMed

66. Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., Mukherjee, A. J. Nanopart. Res. 2011, 13, 3287–3299; https://doi.org/10.1007/s11051-011-0243-0.Search in Google Scholar

67. Lian, Z., Zhang, Y., Zhao, Y. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153; https://doi.org/10.1016/j.ifset.2015.10.008.Search in Google Scholar

Received: 2020-05-03
Accepted: 2020-08-08
Published Online: 2020-09-22
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0105/html
Scroll to top button