Home Robust parameter search for IC tray injection molding using regrind resin
Article
Licensed
Unlicensed Requires Authentication

Robust parameter search for IC tray injection molding using regrind resin

  • Ming-Shyan Huang EMAIL logo and Shih-Chih Nian
Published/Copyright: September 15, 2020
Become an author with De Gruyter Brill

Abstract

Quality consistency is essential in maximizing the productivity rate of the injection molding process and minimizing the production cost. The quality consistency problem is particularly acute in the case of injection molding processes performed using regrind resin, for which the rheological properties are less uniform and more unpredictable than those of virgin material. Accordingly, the present study proposes a two-stage approach for optimizing the injection molding process parameters in such a way as to achieve a consistent molding quality over repeated injection molding cycles. In the first stage, the values of the injection speed/pressure, velocity-to-pressure (V/P) switchover point, and packing pressure are individually determined based on an inspection of the cavity pressure profile and machine parameters provided by the injection molding machine controller. In the second stage, a robust parametric search method based on a first-order regression model is employed to determine the optimal combination of the process parameter settings. Using an Integrated Circuit (IC) tray fabricated from regrind resin for illustration purposes, the results confirm that the proposed method overcomes the problem of small variations in the melt quality and therefore provides an effective technique for improving the yield rate and quality of the continuous mass production.


Corresponding author: Ming-Shyan Huang, Department of Mechatronics Engineering, National Kaohsiung University of Science and Technology, 1 University Road, Yanchao Dist., 824 Kaohsiung City, Taiwan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nian, S. C., Wu, C. Y., Huang, M. S. Int. Commun. Heat Mass Transf. 2015, 61, 102–110. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.008.Search in Google Scholar

2. Nian, S. C., Li, M. H., Huang, M. S. Int. J. Heat Mass Transf. 2015, 86, 358–368. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.027.Search in Google Scholar

3. Kazmer, D., Barkan, P. Polym. Eng. Sci. 1997, 37, 1865–1879. https://doi.org/10.1002/pen.11837.Search in Google Scholar

4. Nian, S. C., Fang, Y. C., Huang, M. S. Polymers 2019, 11, 1348–1362. https://doi.org/10.3390/polym11081348.Search in Google Scholar PubMed PubMed Central

5. Hamad, K., Kaseem, M., Deri, F. Polym. Degrad. Stabil. 2013, 98, 2801–2812. https://doi.org/10.1016/j.polymdegradstab.2013.09.025.Search in Google Scholar

6. Yoshida, T., Ishiaku, U. S., Okumura, H., Baba, S., Hamada, H. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2300–2306. https://doi.org/10.1016/j.compositesa.2006.02.019.Search in Google Scholar

7. Gu, F., Hall, P., Miles, N. J. J. Clean. Prod. 2016, 115, 343–353. https://doi.org/10.1016/j.jclepro.2015.12.062.Search in Google Scholar

8. Gu, F., Hall, P., Miles, N. J. J. Clean. Prod. 2016, 137, 632–643. https://doi.org/10.1016/j.jclepro.2016.07.028.Search in Google Scholar

9. Khademi, F., Ma, Y., Ayranci, C., Choi, K., Duke, K. Polym. Eng. Sci. 2016, 56, 1283–1290. https://doi.org/10.1002/pen.24363.Search in Google Scholar

10. Boronat, J., Segui, V. J., Peydro, M. A., Reig, M. J. J. Mater. Process. Technol. 2009, 209, 2735–2745. https://doi.org/10.1016/j.jmatprotec.2008.06.013.Search in Google Scholar

11. Zuidema, H., Peters, G. W. M., Meijer, H. E. H. J. Appl. Polym. Sci. 2001, 82, 1170–1186. https://doi.org/10.1002/app.1951.Search in Google Scholar

12. van der Beek, M. H. E., Peters, G. W. M., Meijer, H. E. H. Int. Polym. Process. 2005, 20, 111–120. https://doi.org/10.3139/217.1872.Search in Google Scholar

13. van der Beek, M. H. E., Peters, G. W. M., Meijer, H. E. H. Macromol. Mater. Eng. 2005, 290, 443–455. https://doi.org/10.1002/mame.200500027.Search in Google Scholar

14. Wang, J., Mao, Q. Adv. Polym. Technol. 2013, 32, E474−E485. https://doi.org/10.1002/adv.21294.Search in Google Scholar

15. Min, B. H. J. Mater. Process. Technol. 2003, 136, 1–6. https://doi.org/10.1016/S0924-0136(02)00445-4.Search in Google Scholar

16. Chen, Z., Turng, L. S. Polym. Eng. Sci. 2007, 47, 852–862. https://doi.org/10.1002/pen.20769.Search in Google Scholar

17. Michaeli, W., Schreiber, A. Adv. Polym. Technol. 2009, 28, 65–76. https://doi.org/10.1002/adv.20153.Search in Google Scholar

18. Hopmann, C., Reßmann, A. Self-optimizing in injection molding and the problem at compensating viscosity fluctuations. in Proceedings of the SPE/ANTEC 2014, Las Vegas, NV, USA, 2014, 2, 1706–1710.Search in Google Scholar

19. Zhang, J. F., Zhao, P., Zhao, Y., Huang, J. Y., Xia, N., Fu, J. Z. Sens. Actuator A Phys. 2019, 285, 118–126. https://doi.org/10.1016/j.sna.2018.11.009.Search in Google Scholar

20. Gornik, C. Mater. Sci. Forum 2008, 591–593, 174–178. https://doi.org/10.4028/www.scientific.net/msf.591-593.174.Search in Google Scholar

21. Kurt, M., Saban, K. O., Kaynak, Y., Atakok, G., Girit, O. Mater. Des. 2009, 30, 3217–3224. https://doi.org/10.1016/j.matdes.2009.01.004.Search in Google Scholar

22. Wang, J., Xie, P., Ding, Y., Yang, W. Polym. Test. 2009, 28, 228–234. https://doi.org/10.1016/j.polymertesting.2008.09.003.Search in Google Scholar

23. Xie, P. C., Wang, X. H., Wu, T., Ding, Y. M., Yang, W. M. Int. Polym. Process. 2014, 29, 184–190. https://doi.org/10.3139/217.2683.Search in Google Scholar

24. Gao, R. X., Tang, X., Gordon, G., Kazmer, D. O. CIRP Ann. Manuf. Technol. 2014, 63, 493–496. https://doi.org/10.1016/j.cirp.2014.03.041.Search in Google Scholar

25. Gordon, G., Kazmer, D. O., Tang, X., Fan, Z., Gao, R. X. Int. J. Adv. Manuf. Technol. 2015, 78, 1381–1391. https://doi.org/10.1007/s00170-014-6706-6.Search in Google Scholar

26. Lin, C. C., Wang, W. T., Kuo, C. C., Wuet, C. L. Int. J. Mech. Mechatron. Eng. 2014, 8, 687–691.10.1023/A:1026086712672Search in Google Scholar

27. Zhao, P., Zhou, H., He, Y., Cai, K., Fu, J. Int. J. Adv. Manuf. Technol. 2014, 72, 765–777. https://doi.org/10.1007/s00170-014-5711-0.Search in Google Scholar

28. Huang, M. S., Nian, S. C., Chen, J. Y., Lin, C. Y. Precis. Eng. 2018, 51, 647–658. https://doi.org/10.1016/j.precisioneng.2017.11.007.Search in Google Scholar

29. Zhao, P., Zhang, J., Dong, Z., Huang, J., Fu, J., Turng, L. S. Adv. Polym. Technol. 2020, 2020, 1–22. https://doi.org/10.1155/2020/7023616.Search in Google Scholar

30. Huang, M. S. J. Mater. Process. Technol. 2007, 183, 419–424. https://doi.org/10.1016/j.jmatprotec.2006.10.037.Search in Google Scholar

31. Huang, M. S., Lin, T. Y. J. Mater. Process. Technol. 2008, 198, 436–444. https://doi.org/10.1016/j.jmatprotec.2007.07.022.Search in Google Scholar

32. Huang, M. S., Lin, T. Y. Int. J. Heat Mass Transf. 2008, 51, 5828–5837. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.016.Search in Google Scholar

33. Govaerts, B., Noël, J. Qual. Reliab. Eng. Int. 2005, 21, 511–512. https://doi.org/10.1002/qre.737.Search in Google Scholar

Received: 2020-05-01
Accepted: 2020-07-27
Published Online: 2020-09-15
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0097/html
Scroll to top button