Home Effect of pro-oxidant concentration on characteristics of packaging films of cobalt stearate filled polypropylene
Article
Licensed
Unlicensed Requires Authentication

Effect of pro-oxidant concentration on characteristics of packaging films of cobalt stearate filled polypropylene

  • Sunil Sable , Sanjeev Ahuja and Haripada Bhunia EMAIL logo
Published/Copyright: August 3, 2020
Become an author with De Gruyter Brill

Abstract

In this work, polypropylene (PP) filled with different proportions of CoSt were prepared in a twin-screw extruder by compounding technique. Eight films of these compounds were prepared using compression moulding. The modified PP films were characterized for chemical, physical, thermal, and morphological properties (before and after biodegradation). The biodegradation of the CoSt filled PP films was studied under controlled composting conditions, and the degradation intermediates were evaluated for their ecotoxicological impact. The CoSt present in the PP film was confirmed by Fourier transform infrared spectroscopy. As the addition of CoSt was progressively increased, the tensile strength and thermal stability decreased as shown by UTM and thermogravimetric analysis. The compounding of CoSt in PP reduced its crystallinity as revealed by the differential scanning calorimetry and X-ray diffraction analysis, and this led to enhanced degradation of PP. After biodegradation, SEM results of modified PP films showed rougher morphology than before biodegradation. The maximum biodegradation (19.78%) was shown by the film having 2 phr CoSt. The ecotoxicity tests of the degraded material, namely, microbial test, plant growth test, and earthworm acute-toxicity test demonstrated that the biodegradation intermediates were nontoxic. Hence, CoSt filled PP has high industrial potential to make biodegradable flexible packaging.


Corresponding author: Haripada Bhunia, Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala147004, Punjab, India, E-mail:

Award Identifier / Grant number: 22(00745)/17/EMR-II

Acknowledgments

The authors gratefully acknowledge the valuable comments and suggestions of Dr. P. K. Bajpai, Ex-Distinguished Professor, TIET, Patiala, Punjab, India.The authors would like to thank Dr. Vishal Goel, IOCL Faridabad, India for extending the compounding facilities.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors wish to express their sincere thanks to the Council of Scientific and Industrial Research (CSIR), Govt. of India for financial support through scheme number 22(00745)/17/EMR-II.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mandal, D. K., Bhunia, H., Bajpai, P. K., Chaudhari, C. V., Dubey, K. A., Varshney, L., Kumar, A. J. Thermoplast. Compos. Mater. 2019. https://doi.org/10.1177/0892705719850601.Search in Google Scholar

2. Horodytska, O., Valdés, F. J., Fullana, A. Waste. Manag. 2018, 77, 413–425. https://doi.org/10.1016/j.wasman.2018.04.023.Search in Google Scholar PubMed

3. Subramaniam, M., Sharma, S., Gupta, A., Abdullah, N. J. Appl. Polym. Sci. 2018, 135, 46028. https://doi.org/10.1002/app.46028.Search in Google Scholar

4. Sable, S., Mandal, D. K., Ahuja, S., Bhunia, H. J. Environ. Manag. 2019, 249, 109186. https://doi.org/10.1016/j.jenvman.2019.06.087.Search in Google Scholar PubMed

5. Al-Salem, S., Al-Hazza’a, A., Karam, H., Al-Wadi, M., Al-Dhafeeri, A., Al-Rowaih, A. J. Environ. Manag. 2019, 250, 109475. https://doi.org/10.1016/j.jenvman.2019.109475.Search in Google Scholar PubMed

6. Acik, G., Altinkok, C., Tasdelen, M. A. J. Polym. Sci. A Polym. Chem. 2018, 56, 2595–2601. https://doi.org/10.1002/pola.29241.Search in Google Scholar

7. Pira, S. 2018. http://www.smitherspira.com/industrymarket-reports/packaging/flexible-packaging-to-2022.Search in Google Scholar

8. Jain, K., Bhunia, H., Reddy, M. S. Bioremediat. J. 2018, 22, 73–90. https://doi.org/10.1080/10889868.2018.1516620.Search in Google Scholar

9. Plastics Europe, 2018. http://www.smitherspira.com/industry-market reports/packaging/flexible-packagingto-2022.Search in Google Scholar

10. Salomez, M., George, M., Fabre, P., Touchaleaume, F., Cesar, G., Lajarrige, A., Gastaldi, E. Polym. Degrad. Stab. 2019, 167, 102–113. https://doi.org/10.1016/j.polymdegradstab.2019.06.025.Search in Google Scholar

11. Jeon, H. J., Kim, M. N. Int. Biodeter. Biodegrad. 2016, 115, 244–249. https://doi.org/10.1016/j.ibiod.2016.08.025.Search in Google Scholar

12. Dziadek, M., Stodolak-Zych, E., Cholewa-Kowalska, K. Mater. Sci. Eng. C. 2017, 71, 1175–1191. https://doi.org/10.1016/j.msec.2016.10.014.Search in Google Scholar PubMed

13. Karimpour‐Motlagh, N., Khonakdar, H. A., Jafari, S. H., Panahi‐Sarmad, M., Javadi, A., Shojaei, S., Goodarzi, V. Polym. Advanc. Technol. 2019. https://doi.org/10.1002/pat.4699.Search in Google Scholar

14. Kyrikou, I., Briassoulis, D. J. Polym. Environ. 2007, 15, 125–150. https://doi.org/10.1007/s10924-007-0053-8.Search in Google Scholar

15. Kalita, N. K., Nagar, M. K., Mudenur, C., Kalamdhad, A., Katiyar, V. Polym. Test. 2019, 76, 522–536. https://doi.org/10.1016/j.polymertesting.2019.02.021.Search in Google Scholar

16. Pelegrini, K., Maraschin, T. G., Brandalise, R. N., Piazza, D. J. Appl. Polym. Sci. 2019, 48215. https://doi.org/10.1002/app.48215.Search in Google Scholar

17. Kaczmarek, H., Ołdak, D., Malanowski, P., Chaberska, H. Polym. Degrad. Stab. 2005, 88, 189–198. https://doi.org/10.1016/j.polymdegradstab.2004.04.017.Search in Google Scholar

18. Mandal, D. K., Bhunia, H., Bajpai, P. K. J. Thermoplas. Compos. Mater. 2018, 32, 1714–1730. https://doi.org/10.1177/0892705718805130.Search in Google Scholar

19. Mandal, D. K., Bhunia, H., Bajpai, P. K., Dubey, K. A., Varshney, L., Madhu, G. Radiat. Eff. Def. Sol. 2017, 172, 878–895. https://doi.org/10.1080/10420150.2017.1417411.Search in Google Scholar

20. Acik, G. J. Polym. Environ. 2019, 27, 2618–2623. https://doi.org/10.1007/s10924-019-01547-3.Search in Google Scholar

21. Doty, L. A Brief Overview of Degradable Plastics. London: Chapman & Hall, 2005.Search in Google Scholar

22. Ammala, A., Stuart, B., Katherine, D., Eustathios, P., Parveen, S., Susan, W., Qiang, Y., Long, Y., Colin, P., Leong, K.H. Prog. Polym. Sci. 2011, 36, 1015–1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002.Search in Google Scholar

23. Abrusci, C., Pablos, J. L., Corrales, T., López-Marín, J., Marín, I., Catalina, F. Int. Biodeter. Biodegrad. 2011, 65, 451–459. https://doi.org/10.1016/j.ibiod.2010.10.012.Search in Google Scholar

24. Mandal, D. K., Bhunia, H., Bajpai, P. K., Kumar, A., Madhu, G., Nando, G. B. J. Polym. Environ. 2018, 26, 1061–1071. https://doi.org/10.1007/s10924-017-1016-3.Search in Google Scholar

25. Antunes, M. C., Agnelli, J. A., Babetto, A. S., Bonse, B. C., Bettini, S. H. Polym. Test. 2018, 69, 182–187. https://doi.org/10.1016/j.polymertesting.2018.05.008.Search in Google Scholar

26. Marcela, C., Alex, S., Baltus, C., SÃlvia, H. Polym. Degrad. Stab. 2017, 143, 95–103. https://doi.org/10.1016/j.polymdegradstab.2017.06.012.Search in Google Scholar

27. Fontanella, S., Bonhomme, S., Brusson, J.-M., Pitteri, S., Samuel, G., Pichon, G., Lacoste, J., Fromageot, D., Lemaire, J., Delort, A.-M. Polym. Degrad. Stabil. 2013, 98, 875–84. https://doi.org/10.1016/j.polymdegradstab.2013.01.002.Search in Google Scholar

28. Miyazaki, K., Arai, T., Shibata, K., Terano, M., Nakatani, H. Polym. Degrad. Stab. 2012, 97, 2177–2184. https://doi.org/10.1016/j.polymdegradstab.2012.08.010.Search in Google Scholar

29. Koutny, M., Lemaire, J., Delort, A.-M. Chemosphere 2006, 64, 1243–1252. https://doi.org/10.1016/j.chemosphere.2005.12.060.Search in Google Scholar PubMed

30. Nguyen, D. M., Do, T. V. V., Grillet, A.-C., Thuc, H. H., Thuc, C. N. H. Int. Biodeter. Biodegrad. 2016, 115, 257–265. https://doi.org/10.1016/j.ibiod.2016.09.004.Search in Google Scholar

31. Arkatkar, A., Arutchelvi, J., Bhaduri, S., Uppara, P. V., Doble, M. Int. Biodeter. Biodegrad. 2009, 63, 106–1011. https://doi.org/10.1016/j.ibiod.2008.06.005.Search in Google Scholar

32. Roy, P., Surekha, P., Rajagopal, C., Raman, R., Choudhary, V. J. Appl. Polym. Sci. 2006, 99, 236–243. https://doi.org/10.1002/app.22464.Search in Google Scholar

33. Contat-Rodrigo, L. Polym. Degrad. Stab. 2013, 98, 2117–2124. https://doi.org/10.1016/j.polymdegradstab.2013.09.011.Search in Google Scholar

34. Narayan, C., Madhu Dr, G., Ms, K., Diksha, B. J. Appl. Packag. Res. 2019, 11, 2.Search in Google Scholar

35. Al-Salem, S., Sultan, H., Karam, H., Al-Dhafeeri, A. J. Polym. Res. 2019, 26, 157. https://doi.org/10.1007/s10965-019-1822-5.Search in Google Scholar

36. Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., Uppara, P. V. Ind. J. Biotechnol. 2008, 7, 9–22.10.3923/jas.2009.3151.3155Search in Google Scholar

37. Mandal, D. K., Bhunia, H., Bajpai, P. K., Chaudhari, C. V., Dubey, K. A., Varshney, L. J. Polym. Eng. 2018, 38, 239–249. https://doi.org/10.1515/polyeng-2016-0380.Search in Google Scholar

38. Sugumaran, V., Bhunia, H., Narula, A. K. J. Polym. Environ. 2018, 26, 2049–2060. https://doi.org/10.1007/s10924-017-1103-5.Search in Google Scholar

39. Steller, R., Meissner, W. Polym. Degrad. Stab. 1998, 60, 471–480. https://doi.org/10.1016/S0141-3910(97)00110-9.Search in Google Scholar

40. Ramis, X., Cadenato, A., Salla, J., Morancho, J., Valles, A., Contat, L., Ribes, A. Polym. Degrad. Stab. 2004, 86, 483–491. https://doi.org/10.1016/j.polymdegradstab.2004.05.021.Search in Google Scholar

41. Morancho, J., Ramis, X., Fernández, X., Cadenato, A., Salla, J., Vallés, A., Ribes, A. Polym. Degrad. Stab. 2006, 91, 44–51. https://doi.org/10.1016/j.polymdegradstab.2005.04.029.Search in Google Scholar

42. Leejarkpai, T., Suwanmanee, U., Rudeekit, Y., Mungcharoen, T. Waste Manag. 2011, 31, 1153–1161. https://doi.org/10.1016/j.wasman.2010.12.011.Search in Google Scholar PubMed

43. Bensaad, F., Belhaneche-Bensemra, N. J. Polym. Eng. 2018, 38, 715–721. https://doi.org/10.1515/polyeng-2017-0391.Search in Google Scholar

44. Santhoskumar, A., Palanivelu, K. Int. J. Polym. Mater. 2012, 61, 793–808. https://doi.org/10.1080/00914037.2011.610050.Search in Google Scholar

45. Mallakpour, S., Banihassan, K., Sabzalian, M. R. J. Polym. Environ. 2013, 21, 568–574. https://doi.org/10.1007/s10924-012-0478-6.Search in Google Scholar

46. Bardi, M. A., Munhoz, M. M., Auras, R. A., Machado, L. D. Ind. Crop. Prod. 2014, 60, 326–334. https://doi.org/10.1016/j.indcrop.2014.06.042.Search in Google Scholar

47. Indian Oil Corporation Ltd. Product Technical Data Sheet (1030 FG pdf). https://propel.indianoil.in/ProductGradeInfo/1030FG.pdf. (accessed 15 March 2018).Search in Google Scholar

48. Singh, G., Kaur, N., Bhunia, H., Bajpai, P. K., Mandal, U. K. J. Appl. Polym. Sci. 2012, 124, 1993–1998. https://doi.org/10.1002/app.35216.Search in Google Scholar

49. Moo-Tun, N. M., Valadez-González, A., Uribe-Calderon, J. A. Polym. Bull. 2018, 75, 3149–3169. https://doi.org/10.1007/s00289-017-2204-y.Search in Google Scholar

50. ASTM, D. 5338-15: standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions incorporating. Thermophilic Temperatures 2011.Search in Google Scholar

51. Petric, I., Selimbašić, V. Chem. Eng. J. 2008, 139, 304–317. https://doi.org/10.1016/j.cej.2007.08.017.Search in Google Scholar

52. Madhu, G., Bhunia, H., Bajpai, P. K., Nando, G. B. Polym. Sci. Ser. A. 2016, 58, 57–75. https://doi.org/10.1134/s0965545x16010077.Search in Google Scholar

53. OCED. 208, Terrestial Plant Growth Test, 1984.Search in Google Scholar

54. OECD. 207, Earthworm, Acute Toxicity Test, 1984.Search in Google Scholar

55. Islam, N. M., Othman, N., Ahmad, Z., Ismail, H. Polym. Plast. Technol. Eng. 2010, 49, 272–278. https://doi.org/10.1080/03602550903413904.Search in Google Scholar

56. Roy, P., Surekha, P., Raman, R., Rajagopal, C. Polym. Degrad. Stab. 2009, 94, 1033–1039. https://doi.org/10.1016/j.polymdegradstab.2009.04.025.Search in Google Scholar

57. Montagna, L. S., da Camargo Forte, M. M., Santana, R. M. C. J. Mater. Sci. Eng. A. 2013, 3, 123.Search in Google Scholar

58. Rosa, D., Grillo, D., Bardi, M., Calil, M., Guedes, C., Ramires, E., et al. Polym. Test. 2009, 28, 836–842. https://doi.org/10.1016/j.polymertesting.2009.07.006.Search in Google Scholar

59. Jain, K., Madhu, G., Bhunia, H., Bajpai, P. K., Nando, G. B., Reddy, M. S. J. Polym. Eng. 2015, 35, 407–415. https://doi.org/10.1515/polyeng-2014-0179.Search in Google Scholar

60. Muthukumar, T., Aravinthan, A., Mukesh, D. Polym. Degrad. Stab. 2010, 95, 1988–1993. https://doi.org/10.1016/j.polymdegradstab.2010.07.017.Search in Google Scholar

61. El‐Arnaouty, M., Abdel Ghaffar, A., El Shafey, H. J. Appl. Polym. Sci. 2008, 107, 744–754. https://doi.org/10.1002/app.27099.Search in Google Scholar

62. Komilis, D. P. Waste Manag. 2006, 26, 82–91. https://doi.org/10.1016/j.wasman.2004.12.021.Search in Google Scholar PubMed

63. Islam, N. Z. M, Othman, N., Ahmad, Z., Ismail, Z. Sains. Malays. 2011, 40, 803–808.Search in Google Scholar

64. Montagna, L. S., Catto, A. L., de Camargo Forte, M. M., Chiellini, E., Corti, A., Morelli, A., Santana, R. M.C. Polym. Degrad. Stab. 2015, 120, 186–192. https://doi.org/10.1016/j.polymdegradstab.2015.06.019.Search in Google Scholar

65. Marschner, H. Functions of Mineral Nutrients: Macronutrients Mineral Nutrition of Higher Plants, 2nd ed. UK: Academic Press, 1995; pp. 299–312.10.1016/B978-012473542-2/50010-9Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0065).


Received: 2020-03-26
Accepted: 2020-06-06
Published Online: 2020-08-03
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0065/pdf
Scroll to top button