Abstract
In this work, polypropylene (PP) filled with different proportions of CoSt were prepared in a twin-screw extruder by compounding technique. Eight films of these compounds were prepared using compression moulding. The modified PP films were characterized for chemical, physical, thermal, and morphological properties (before and after biodegradation). The biodegradation of the CoSt filled PP films was studied under controlled composting conditions, and the degradation intermediates were evaluated for their ecotoxicological impact. The CoSt present in the PP film was confirmed by Fourier transform infrared spectroscopy. As the addition of CoSt was progressively increased, the tensile strength and thermal stability decreased as shown by UTM and thermogravimetric analysis. The compounding of CoSt in PP reduced its crystallinity as revealed by the differential scanning calorimetry and X-ray diffraction analysis, and this led to enhanced degradation of PP. After biodegradation, SEM results of modified PP films showed rougher morphology than before biodegradation. The maximum biodegradation (19.78%) was shown by the film having 2 phr CoSt. The ecotoxicity tests of the degraded material, namely, microbial test, plant growth test, and earthworm acute-toxicity test demonstrated that the biodegradation intermediates were nontoxic. Hence, CoSt filled PP has high industrial potential to make biodegradable flexible packaging.
Funding source: Council of Scientific and Industrial Research
Award Identifier / Grant number: 22(00745)/17/EMR-II
Acknowledgments
The authors gratefully acknowledge the valuable comments and suggestions of Dr. P. K. Bajpai, Ex-Distinguished Professor, TIET, Patiala, Punjab, India.The authors would like to thank Dr. Vishal Goel, IOCL Faridabad, India for extending the compounding facilities.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors wish to express their sincere thanks to the Council of Scientific and Industrial Research (CSIR), Govt. of India for financial support through scheme number 22(00745)/17/EMR-II.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mandal, D. K., Bhunia, H., Bajpai, P. K., Chaudhari, C. V., Dubey, K. A., Varshney, L., Kumar, A. J. Thermoplast. Compos. Mater. 2019. https://doi.org/10.1177/0892705719850601.Search in Google Scholar
2. Horodytska, O., Valdés, F. J., Fullana, A. Waste. Manag. 2018, 77, 413–425. https://doi.org/10.1016/j.wasman.2018.04.023.Search in Google Scholar PubMed
3. Subramaniam, M., Sharma, S., Gupta, A., Abdullah, N. J. Appl. Polym. Sci. 2018, 135, 46028. https://doi.org/10.1002/app.46028.Search in Google Scholar
4. Sable, S., Mandal, D. K., Ahuja, S., Bhunia, H. J. Environ. Manag. 2019, 249, 109186. https://doi.org/10.1016/j.jenvman.2019.06.087.Search in Google Scholar PubMed
5. Al-Salem, S., Al-Hazza’a, A., Karam, H., Al-Wadi, M., Al-Dhafeeri, A., Al-Rowaih, A. J. Environ. Manag. 2019, 250, 109475. https://doi.org/10.1016/j.jenvman.2019.109475.Search in Google Scholar PubMed
6. Acik, G., Altinkok, C., Tasdelen, M. A. J. Polym. Sci. A Polym. Chem. 2018, 56, 2595–2601. https://doi.org/10.1002/pola.29241.Search in Google Scholar
7. Pira, S. 2018. http://www.smitherspira.com/industrymarket-reports/packaging/flexible-packaging-to-2022.Search in Google Scholar
8. Jain, K., Bhunia, H., Reddy, M. S. Bioremediat. J. 2018, 22, 73–90. https://doi.org/10.1080/10889868.2018.1516620.Search in Google Scholar
9. Plastics Europe, 2018. http://www.smitherspira.com/industry-market reports/packaging/flexible-packagingto-2022.Search in Google Scholar
10. Salomez, M., George, M., Fabre, P., Touchaleaume, F., Cesar, G., Lajarrige, A., Gastaldi, E. Polym. Degrad. Stab. 2019, 167, 102–113. https://doi.org/10.1016/j.polymdegradstab.2019.06.025.Search in Google Scholar
11. Jeon, H. J., Kim, M. N. Int. Biodeter. Biodegrad. 2016, 115, 244–249. https://doi.org/10.1016/j.ibiod.2016.08.025.Search in Google Scholar
12. Dziadek, M., Stodolak-Zych, E., Cholewa-Kowalska, K. Mater. Sci. Eng. C. 2017, 71, 1175–1191. https://doi.org/10.1016/j.msec.2016.10.014.Search in Google Scholar PubMed
13. Karimpour‐Motlagh, N., Khonakdar, H. A., Jafari, S. H., Panahi‐Sarmad, M., Javadi, A., Shojaei, S., Goodarzi, V. Polym. Advanc. Technol. 2019. https://doi.org/10.1002/pat.4699.Search in Google Scholar
14. Kyrikou, I., Briassoulis, D. J. Polym. Environ. 2007, 15, 125–150. https://doi.org/10.1007/s10924-007-0053-8.Search in Google Scholar
15. Kalita, N. K., Nagar, M. K., Mudenur, C., Kalamdhad, A., Katiyar, V. Polym. Test. 2019, 76, 522–536. https://doi.org/10.1016/j.polymertesting.2019.02.021.Search in Google Scholar
16. Pelegrini, K., Maraschin, T. G., Brandalise, R. N., Piazza, D. J. Appl. Polym. Sci. 2019, 48215. https://doi.org/10.1002/app.48215.Search in Google Scholar
17. Kaczmarek, H., Ołdak, D., Malanowski, P., Chaberska, H. Polym. Degrad. Stab. 2005, 88, 189–198. https://doi.org/10.1016/j.polymdegradstab.2004.04.017.Search in Google Scholar
18. Mandal, D. K., Bhunia, H., Bajpai, P. K. J. Thermoplas. Compos. Mater. 2018, 32, 1714–1730. https://doi.org/10.1177/0892705718805130.Search in Google Scholar
19. Mandal, D. K., Bhunia, H., Bajpai, P. K., Dubey, K. A., Varshney, L., Madhu, G. Radiat. Eff. Def. Sol. 2017, 172, 878–895. https://doi.org/10.1080/10420150.2017.1417411.Search in Google Scholar
20. Acik, G. J. Polym. Environ. 2019, 27, 2618–2623. https://doi.org/10.1007/s10924-019-01547-3.Search in Google Scholar
21. Doty, L. A Brief Overview of Degradable Plastics. London: Chapman & Hall, 2005.Search in Google Scholar
22. Ammala, A., Stuart, B., Katherine, D., Eustathios, P., Parveen, S., Susan, W., Qiang, Y., Long, Y., Colin, P., Leong, K.H. Prog. Polym. Sci. 2011, 36, 1015–1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002.Search in Google Scholar
23. Abrusci, C., Pablos, J. L., Corrales, T., López-Marín, J., Marín, I., Catalina, F. Int. Biodeter. Biodegrad. 2011, 65, 451–459. https://doi.org/10.1016/j.ibiod.2010.10.012.Search in Google Scholar
24. Mandal, D. K., Bhunia, H., Bajpai, P. K., Kumar, A., Madhu, G., Nando, G. B. J. Polym. Environ. 2018, 26, 1061–1071. https://doi.org/10.1007/s10924-017-1016-3.Search in Google Scholar
25. Antunes, M. C., Agnelli, J. A., Babetto, A. S., Bonse, B. C., Bettini, S. H. Polym. Test. 2018, 69, 182–187. https://doi.org/10.1016/j.polymertesting.2018.05.008.Search in Google Scholar
26. Marcela, C., Alex, S., Baltus, C., SÃlvia, H. Polym. Degrad. Stab. 2017, 143, 95–103. https://doi.org/10.1016/j.polymdegradstab.2017.06.012.Search in Google Scholar
27. Fontanella, S., Bonhomme, S., Brusson, J.-M., Pitteri, S., Samuel, G., Pichon, G., Lacoste, J., Fromageot, D., Lemaire, J., Delort, A.-M. Polym. Degrad. Stabil. 2013, 98, 875–84. https://doi.org/10.1016/j.polymdegradstab.2013.01.002.Search in Google Scholar
28. Miyazaki, K., Arai, T., Shibata, K., Terano, M., Nakatani, H. Polym. Degrad. Stab. 2012, 97, 2177–2184. https://doi.org/10.1016/j.polymdegradstab.2012.08.010.Search in Google Scholar
29. Koutny, M., Lemaire, J., Delort, A.-M. Chemosphere 2006, 64, 1243–1252. https://doi.org/10.1016/j.chemosphere.2005.12.060.Search in Google Scholar PubMed
30. Nguyen, D. M., Do, T. V. V., Grillet, A.-C., Thuc, H. H., Thuc, C. N. H. Int. Biodeter. Biodegrad. 2016, 115, 257–265. https://doi.org/10.1016/j.ibiod.2016.09.004.Search in Google Scholar
31. Arkatkar, A., Arutchelvi, J., Bhaduri, S., Uppara, P. V., Doble, M. Int. Biodeter. Biodegrad. 2009, 63, 106–1011. https://doi.org/10.1016/j.ibiod.2008.06.005.Search in Google Scholar
32. Roy, P., Surekha, P., Rajagopal, C., Raman, R., Choudhary, V. J. Appl. Polym. Sci. 2006, 99, 236–243. https://doi.org/10.1002/app.22464.Search in Google Scholar
33. Contat-Rodrigo, L. Polym. Degrad. Stab. 2013, 98, 2117–2124. https://doi.org/10.1016/j.polymdegradstab.2013.09.011.Search in Google Scholar
34. Narayan, C., Madhu Dr, G., Ms, K., Diksha, B. J. Appl. Packag. Res. 2019, 11, 2.Search in Google Scholar
35. Al-Salem, S., Sultan, H., Karam, H., Al-Dhafeeri, A. J. Polym. Res. 2019, 26, 157. https://doi.org/10.1007/s10965-019-1822-5.Search in Google Scholar
36. Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., Uppara, P. V. Ind. J. Biotechnol. 2008, 7, 9–22.10.3923/jas.2009.3151.3155Search in Google Scholar
37. Mandal, D. K., Bhunia, H., Bajpai, P. K., Chaudhari, C. V., Dubey, K. A., Varshney, L. J. Polym. Eng. 2018, 38, 239–249. https://doi.org/10.1515/polyeng-2016-0380.Search in Google Scholar
38. Sugumaran, V., Bhunia, H., Narula, A. K. J. Polym. Environ. 2018, 26, 2049–2060. https://doi.org/10.1007/s10924-017-1103-5.Search in Google Scholar
39. Steller, R., Meissner, W. Polym. Degrad. Stab. 1998, 60, 471–480. https://doi.org/10.1016/S0141-3910(97)00110-9.Search in Google Scholar
40. Ramis, X., Cadenato, A., Salla, J., Morancho, J., Valles, A., Contat, L., Ribes, A. Polym. Degrad. Stab. 2004, 86, 483–491. https://doi.org/10.1016/j.polymdegradstab.2004.05.021.Search in Google Scholar
41. Morancho, J., Ramis, X., Fernández, X., Cadenato, A., Salla, J., Vallés, A., Ribes, A. Polym. Degrad. Stab. 2006, 91, 44–51. https://doi.org/10.1016/j.polymdegradstab.2005.04.029.Search in Google Scholar
42. Leejarkpai, T., Suwanmanee, U., Rudeekit, Y., Mungcharoen, T. Waste Manag. 2011, 31, 1153–1161. https://doi.org/10.1016/j.wasman.2010.12.011.Search in Google Scholar PubMed
43. Bensaad, F., Belhaneche-Bensemra, N. J. Polym. Eng. 2018, 38, 715–721. https://doi.org/10.1515/polyeng-2017-0391.Search in Google Scholar
44. Santhoskumar, A., Palanivelu, K. Int. J. Polym. Mater. 2012, 61, 793–808. https://doi.org/10.1080/00914037.2011.610050.Search in Google Scholar
45. Mallakpour, S., Banihassan, K., Sabzalian, M. R. J. Polym. Environ. 2013, 21, 568–574. https://doi.org/10.1007/s10924-012-0478-6.Search in Google Scholar
46. Bardi, M. A., Munhoz, M. M., Auras, R. A., Machado, L. D. Ind. Crop. Prod. 2014, 60, 326–334. https://doi.org/10.1016/j.indcrop.2014.06.042.Search in Google Scholar
47. Indian Oil Corporation Ltd. Product Technical Data Sheet (1030 FG pdf). https://propel.indianoil.in/ProductGradeInfo/1030FG.pdf. (accessed 15 March 2018).Search in Google Scholar
48. Singh, G., Kaur, N., Bhunia, H., Bajpai, P. K., Mandal, U. K. J. Appl. Polym. Sci. 2012, 124, 1993–1998. https://doi.org/10.1002/app.35216.Search in Google Scholar
49. Moo-Tun, N. M., Valadez-González, A., Uribe-Calderon, J. A. Polym. Bull. 2018, 75, 3149–3169. https://doi.org/10.1007/s00289-017-2204-y.Search in Google Scholar
50. ASTM, D. 5338-15: standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions incorporating. Thermophilic Temperatures 2011.Search in Google Scholar
51. Petric, I., Selimbašić, V. Chem. Eng. J. 2008, 139, 304–317. https://doi.org/10.1016/j.cej.2007.08.017.Search in Google Scholar
52. Madhu, G., Bhunia, H., Bajpai, P. K., Nando, G. B. Polym. Sci. Ser. A. 2016, 58, 57–75. https://doi.org/10.1134/s0965545x16010077.Search in Google Scholar
53. OCED. 208, Terrestial Plant Growth Test, 1984.Search in Google Scholar
54. OECD. 207, Earthworm, Acute Toxicity Test, 1984.Search in Google Scholar
55. Islam, N. M., Othman, N., Ahmad, Z., Ismail, H. Polym. Plast. Technol. Eng. 2010, 49, 272–278. https://doi.org/10.1080/03602550903413904.Search in Google Scholar
56. Roy, P., Surekha, P., Raman, R., Rajagopal, C. Polym. Degrad. Stab. 2009, 94, 1033–1039. https://doi.org/10.1016/j.polymdegradstab.2009.04.025.Search in Google Scholar
57. Montagna, L. S., da Camargo Forte, M. M., Santana, R. M. C. J. Mater. Sci. Eng. A. 2013, 3, 123.Search in Google Scholar
58. Rosa, D., Grillo, D., Bardi, M., Calil, M., Guedes, C., Ramires, E., et al. Polym. Test. 2009, 28, 836–842. https://doi.org/10.1016/j.polymertesting.2009.07.006.Search in Google Scholar
59. Jain, K., Madhu, G., Bhunia, H., Bajpai, P. K., Nando, G. B., Reddy, M. S. J. Polym. Eng. 2015, 35, 407–415. https://doi.org/10.1515/polyeng-2014-0179.Search in Google Scholar
60. Muthukumar, T., Aravinthan, A., Mukesh, D. Polym. Degrad. Stab. 2010, 95, 1988–1993. https://doi.org/10.1016/j.polymdegradstab.2010.07.017.Search in Google Scholar
61. El‐Arnaouty, M., Abdel Ghaffar, A., El Shafey, H. J. Appl. Polym. Sci. 2008, 107, 744–754. https://doi.org/10.1002/app.27099.Search in Google Scholar
62. Komilis, D. P. Waste Manag. 2006, 26, 82–91. https://doi.org/10.1016/j.wasman.2004.12.021.Search in Google Scholar PubMed
63. Islam, N. Z. M, Othman, N., Ahmad, Z., Ismail, Z. Sains. Malays. 2011, 40, 803–808.Search in Google Scholar
64. Montagna, L. S., Catto, A. L., de Camargo Forte, M. M., Chiellini, E., Corti, A., Morelli, A., Santana, R. M.C. Polym. Degrad. Stab. 2015, 120, 186–192. https://doi.org/10.1016/j.polymdegradstab.2015.06.019.Search in Google Scholar
65. Marschner, H. Functions of Mineral Nutrients: Macronutrients Mineral Nutrition of Higher Plants, 2nd ed. UK: Academic Press, 1995; pp. 299–312.10.1016/B978-012473542-2/50010-9Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0065).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Influences of interface structure on tribological properties of engineering polymer blends: a review
- Effect of pro-oxidant concentration on characteristics of packaging films of cobalt stearate filled polypropylene
- Effects of lamellar microstructure of retinoic acid loaded-matrixes on physicochemical properties, migration, and neural differentiation of P19 embryonic carcinoma cells
- Synthesis of Ag@PANI nanocomposites by complexation method and their application as label-free chemo-probe for detection of mercury ions
- Preparation and assembly
- Fabrication of ultrahigh-molecular-weight polyethylene porous implant for bone application
- Green composites based on Atriplex halimus fibers and PLA matrix
- Rubber-ceramic composites applicable in flexible antennas
- Star-shaped arylacetylene resins derived from silicon
- Engineering and processing
- Mathematical analysis of a non-Newtonian polymer in the forward roll coating process
Articles in the same Issue
- Frontmatter
- Material properties
- Influences of interface structure on tribological properties of engineering polymer blends: a review
- Effect of pro-oxidant concentration on characteristics of packaging films of cobalt stearate filled polypropylene
- Effects of lamellar microstructure of retinoic acid loaded-matrixes on physicochemical properties, migration, and neural differentiation of P19 embryonic carcinoma cells
- Synthesis of Ag@PANI nanocomposites by complexation method and their application as label-free chemo-probe for detection of mercury ions
- Preparation and assembly
- Fabrication of ultrahigh-molecular-weight polyethylene porous implant for bone application
- Green composites based on Atriplex halimus fibers and PLA matrix
- Rubber-ceramic composites applicable in flexible antennas
- Star-shaped arylacetylene resins derived from silicon
- Engineering and processing
- Mathematical analysis of a non-Newtonian polymer in the forward roll coating process