Abstract
This work focuses on the potential use of cellulose fibers extracted from Mediterranean saltbush (Atriplex halimus) as a filler in the polymeric matrix. The fully biodegradable composites were prepared from polylactic acid (PLA) as matrix and microcellulose fibers ranging from 0 to 15 wt.%. The influence of the fiber content on the structure, mechanical, thermal, and water absorption properties was evaluated. Mechanical results indicated that fibers acted effectively as reinforcement, increasing the tensile strength and the Young’s modulus of PLA by 25 and 45%, respectively. This is due to the good stress transfer between fibers and matrix through the strong interactions that have been evidenced by Fourier Transform Infrared (FTIR) spectroscopy. The thermogravimetric analysis showed that PLA composites have a slightly lower degradation temperature than the pure PLA, but they still have favorable thermal stability. Water absorption measurements and biodegradability tests showed that the addition of fibers accelerates degradation kinetics and confirm that the prepared composites are an environmentally safe material suited for different applications.
Acknowledgments
The authors would like to thank the UMET Laboratory of the University Lille 1 (France) for providing the necessary materials and for technical support.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: No funding.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zhang, W., Yang, X., Li, C., Liang, M., Lu, C., Deng, Y. Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydr. Polym. 2011, 83, 257–263; http://doi.org/10.1016/j.carbpol.2010.07.062.10.1016/j.carbpol.2010.07.062Search in Google Scholar
2. Hapuarachchi, T. D., Peijs, T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. Appl. Sci. Manuf. 2010, 41, 954–963; http://doi.org/10.1016/j.compositesa.2010.03.004.10.1016/j.compositesa.2010.03.004Search in Google Scholar
3. Frone, A. N., Berlioz, S., Chailan, J. F., Panaitescu, D. M. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr. Polym. 2013, 91, 377–384; http://doi.org/10.1016/j.carbpol.2012.08.054.10.1016/j.carbpol.2012.08.054Search in Google Scholar
4. Huda, M. S., Drzal, L. T., Mohanty, A. K., Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos. Sci. Technol. 2006, 66, 11–12, 1813–1824; https://doi.org/10.1016/j.compscitech.2005.10.015.Search in Google Scholar
5. Akil, H. M., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., Abu Bakar, A. Kenaf fiber reinforced composites: a review. Mater. Des. 2011, 32, 4107–4121; http://doi.org/10.1016/j.matdes.2011.04.008.10.1016/j.matdes.2011.04.008Search in Google Scholar
6. Bledzki, A., Gassan, J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 1999, 24, 221–74; http://doi.org/10.1016/s0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5Search in Google Scholar
7. Sahari, J., Sapuan, S. M. Natural fibre reinforced biodegradable polymer composites. Rev. Adv. Mater. Sci. 2011, 30, 166–174.Search in Google Scholar
8. Nina Graupner, N., Axel, S., Herrmann, A. S., Müssig, J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos. Appl. Sci. Manuf. 2009, 40, 810–821; http://doi.org/10.1016/j.compositesa.2009.04.003.10.1016/j.compositesa.2009.04.003Search in Google Scholar
9. Boudjema, H. L., Bendaikha, H. Composite material derived from biodegradable starch polymer and Atriplex Halimus fibers. E-Polym. 2015, 15, 419–426; http://doi.org/10.1515/epoly-2015-0118.10.1515/epoly-2015-0118Search in Google Scholar
10. Sanchez-Garcia, M. D., Gimenez, E., Lagaron, J. M. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr. Polym. 2008, 71, 235–244; http://doi.org/10.1016/j.carbpol.2007.05.041.10.1016/j.carbpol.2007.05.041Search in Google Scholar
11. Nakagaito, A. N., Fujimura, A., Sakai, T., Yoshiaki, H., Yano, H. Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos. Sci. Technol. 2009, 69, 1293–1297; http://doi.org/10.1016/j.compscitech.2009.03.004.10.1016/j.compscitech.2009.03.004Search in Google Scholar
12. Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747; http://doi.org/10.1016/j.compscitech.2010.07.005.10.1016/j.compscitech.2010.07.005Search in Google Scholar
13. Bajwa, D. S., Adhikari, S., Shojaeiarani, J., Sreekala, G. B., Pandey, P., Shanmugam, S. R. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construct. Build. Mater. 2019, 204, 193–202; http://doi.org/10.1016/j.conbuildmat.2019.01.068.10.1016/j.conbuildmat.2019.01.068Search in Google Scholar
14. Suaduang, N., Ross, S., Ross, G. M., Pratumshat, S., Mahasaranon, S. Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Mater. Today: Proc. 2019, 17, 2104–2110; http://doi.org/10.1016/j.matpr.2019.06.260.10.1016/j.matpr.2019.06.260Search in Google Scholar
15. Ait Laaziz, S., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., Qaiss, A. Bio-composites based on polylactic acid and argan nut shell: production and properties. Int. J. Biol. Macromol. 2017, 104, 30–42; https://doi.org/10.1016/j.ijbiomac.2017.05.184.Search in Google Scholar PubMed
16. Kamonwan, A. N., Noipitak, M. Effect of carbon-rich biochar on mechanical properties of PLA-biochar composites. Sustain. Chem. Pharm. 2020, 15, 100204; https://doi.org/10.1016/j.scp.2019.100204.Search in Google Scholar
17. Anwer, M. A. S., Naguib, H. E., Celzard, A., Fierro, V. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Compos. B Eng. 2015, 82, 92–99; http://doi.org/10.1016/j.compositesb.2015.08.028.10.1016/j.compositesb.2015.08.028Search in Google Scholar
18. Nizamuddin, S., Jadhav, A., Qureshi, S. S., Baloch, H. A., Siddiqui, M. T. H., Mubarak, N. M., Griffin, G., Madapusi, S., Tanksale, A., Ahamed, M. I. Synthesis and characterization of polylactide/rice husk hydrochar composite. Sci. Rep. 2019, 9, 5445; http://doi.org/10.1038/s41598-019-41960-1.10.1038/s41598-019-41960-1Search in Google Scholar PubMed PubMed Central
19. Osswald, T. A. Fundamental principles of polymer composites: processing and design. In Proceedings of the 5th International Conference of wood fiber–plastic composites. Sponsored by the USDA Forest Service in cooperation with the American Plastics Council, the University of Wisconsin, the University American Chemical Society, and the Forest Products Society. Opening Plenary of Toronto, the Cellulose, Paper, and Textile Division of the Session, 3-19. Madison, Wisconsin, May 26–27, 1999.Search in Google Scholar
20. Goriparthi, B. K., Suman, K. N. S., Rao, N. M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute. Compos. Appl. Sci. Manuf. 2012, 43, 1800–1808; http://doi.org/10.1016/j.compositesa.2012.05.007.10.1016/j.compositesa.2012.05.007Search in Google Scholar
21. Ragoubi, M., George, B., Molina, S., Bienaimé, D., Merlin, A., Hiver, J. M., Dahoun, A. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos. Appl. Sci. Manuf. 2012, 43, 675–685; http://doi.org/10.1016/j.compositesa.2011.12.025.10.1016/j.compositesa.2011.12.025Search in Google Scholar
22. Sawpan, M. A., Pickering, K. L., Fernyhough, A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos. Appl. Sci. Manuf. 2011, 42, 1189–1196; http://doi.org/10.1016/j.compositesa.2011.05.003.10.1016/j.compositesa.2011.05.003Search in Google Scholar
23. Bhiogade, Y. A., Kannan, M., Devanathan, S. Degradation kinetics study of poly lactic acid (PLA) based biodegradable green composites. Mater. Today: Proc. 2020, 24, 806–814; http://doi.org/10.1016/j.matpr.2020.04.389.10.1016/j.matpr.2020.04.389Search in Google Scholar
24. Ndazi, B. S., Karlsson, S. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym. Lett. 2011, 5, 119–131; http://doi.org/10.3144/expresspolymlett.2011.13.10.3144/expresspolymlett.2011.13Search in Google Scholar
25. Lee, S. H., Ohkita, T., Kitagawa, K. Eco-composite from poly (lactic acid) and bamboo fiber. Holzforschung 2004, 58, 529–536; http://doi.org/10.1515/hf.2004.080.10.1515/HF.2004.080Search in Google Scholar
26. Semba, T., Kitagawa, K., Ishiaku, U. S., Hamada, H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 2006, 101, 1816–1825; http://doi.org/10.1002/app.23589.10.1002/app.23589Search in Google Scholar
27. Li, S., McCarthy, S. Further investigations on the hydrolytic degradation of poly(DL-lactide). Biomaterials 1999, 20, 35–44; http://doi.org/10.1016/s0142-9612(97)00226-3.10.1016/S0142-9612(97)00226-3Search in Google Scholar
28. Rudeekit, Y., Numnoi, J., Tajan, M., Chaiwutthinan, P., Leejarkpai, T. Determining biodegradability of polylactic acid under different environments. J Met. Mater. Miner. 2008, 18, 83–87.Search in Google Scholar
29. Ramaraj, B., Poomalai, P. Ecofriendly poly(vinyl alcohol) and coconut shell powder composite films: physico-mechanical, thermal properties, and swelling studies. J. Appl. Polym. Sci. 2006, 102, 3862–3867; http://doi.org/10.1002/app.23913.10.1002/app.23913Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Influences of interface structure on tribological properties of engineering polymer blends: a review
- Effect of pro-oxidant concentration on characteristics of packaging films of cobalt stearate filled polypropylene
- Effects of lamellar microstructure of retinoic acid loaded-matrixes on physicochemical properties, migration, and neural differentiation of P19 embryonic carcinoma cells
- Synthesis of Ag@PANI nanocomposites by complexation method and their application as label-free chemo-probe for detection of mercury ions
- Preparation and assembly
- Fabrication of ultrahigh-molecular-weight polyethylene porous implant for bone application
- Green composites based on Atriplex halimus fibers and PLA matrix
- Rubber-ceramic composites applicable in flexible antennas
- Star-shaped arylacetylene resins derived from silicon
- Engineering and processing
- Mathematical analysis of a non-Newtonian polymer in the forward roll coating process
Articles in the same Issue
- Frontmatter
- Material properties
- Influences of interface structure on tribological properties of engineering polymer blends: a review
- Effect of pro-oxidant concentration on characteristics of packaging films of cobalt stearate filled polypropylene
- Effects of lamellar microstructure of retinoic acid loaded-matrixes on physicochemical properties, migration, and neural differentiation of P19 embryonic carcinoma cells
- Synthesis of Ag@PANI nanocomposites by complexation method and their application as label-free chemo-probe for detection of mercury ions
- Preparation and assembly
- Fabrication of ultrahigh-molecular-weight polyethylene porous implant for bone application
- Green composites based on Atriplex halimus fibers and PLA matrix
- Rubber-ceramic composites applicable in flexible antennas
- Star-shaped arylacetylene resins derived from silicon
- Engineering and processing
- Mathematical analysis of a non-Newtonian polymer in the forward roll coating process