Abstract
The bead foaming behavior of ether- and an ester-based Tensor Processing Unit (TPU) resins were investigated in a lab-scale reactor using supercritical CO2 as the blowing agent. The samples were saturated at various saturation temperatures and the effects of hard segment crystallization during the saturation on the foaming behavior of the TPU samples were explored. The results revealed that the different HS crystallization tendencies and possible CO2 solubility differences in two TPU grades led to their different foaming behaviors. The ester-based TPU could be foamed within a wider saturation temperature range and revealed an easier cell growth and foam expansion while the ether-based TPU showed a more limited cell growth behavior and hence processing window. The effect of pre-annealing and hence the isothermally induced HS crystallization on the foaming behavior of the ether-based TPU and the influence of depressurization rate on the foaming behavior of ester-based TPU was also explored.
Acknowledgements
The authors would like to greatly appreciate the Global Research group of Huntsman Polyurethanes (Huntsman Polyurethanes-Belgium) for kindly supplying the materials and sponsoring the project. We would also like to acknowledge the contributions made by the scientists from Huntsman Polyurethanes, specifically Dr. Rene Klein, Ms. Conny Nijs, and Mr. Giovanni Tomei. The authors would also like to sincerely thank Professor Mustafa Urgen and Professor Kursat Kazmanli from Istanbul Technical University for their support by providing their lab space to run SEM experiments.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Matuana, L. M., Park, C. B., Balatinecz, J. J. Polym. Mater. Sci. Eng. 1998, 38, 1862–1872; https://doi.org/10.1002/pen.10356.Search in Google Scholar
2. Glicksman, L. Notes from MIT Summer Program 4.10S Foams and Cellular Materials: Thermal and Mechanical Properties; Massachusetts Institute of Technology: Cambridge, MA, 1992.Search in Google Scholar
3. Suh, K. W., Park, C. P., Maurer, M. J., Tusim, M. H., Genova, R. D., Broos, R., Sophiea, D. P. Adv. Mater. 2000, 12, 1779–1789; https://doi.org/10.1002/1521-4095(200012)12:23<1779::aid-adma1779>3.0.co;2-3.10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3Search in Google Scholar
4. Kabumoto, A., Yoshida, N., Itoh, M., Okada, M. US Patent 5,844,731, 1998.Search in Google Scholar
5. Keshtkar, M., Nofar, M., Park, C. B., Carreau, P. J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 2014, 55, 4077–4090; https://doi.org/10.1016/j.polymer.2014.06.059.Search in Google Scholar
6. Nofar, M. Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mater. Des. 2016, 101, 24–34; https://doi.org/10.1016/j.matdes.2016.03.147.Search in Google Scholar
7. Ameli, A., Jahani, D., Nofar, M., Jung, P. U., Park, C. B. Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Compos. Sci. Technol. 2014, 90, 88–95; https://doi.org/10.1016/j.compscitech.2013.10.019.Search in Google Scholar
8. Ameli, A., Nofar, M., Jahani, D., Rizvi, G., Park, C. B. Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors. Chem. Eng. J. 2015, 262, 78–87; https://doi.org/10.1016/j.cej.2014.09.087.Search in Google Scholar
9. Raps, D., Hossieny, N., Park, C. B., Altstädt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19; https://doi.org/10.1016/j.polymer.2014.10.078.Search in Google Scholar
10. Landrock, A. H. Ed. Handbook of Plastic Foams: Types, Properties, Manufacture, and Application; Noyes Publications: New Jersey, 1995.10.1016/B978-081551357-5.50005-XSearch in Google Scholar
11. Eaves, D. Handbook of Polymer Foams; Rapra Technology: Shawbury, Shrewsbury, UK, 2004.Search in Google Scholar
12. Britton, R. Update on Mouldable Particle Foam Technology; Rapra Technology: Shawbury, Shrewsbury, UK, 2009.Search in Google Scholar
13. Mills, N. Polymer Foams Handbook Engineering and Biomechanics Applications and Design; Guide Butterworth-Heinemann: Boston, MA, 2007.Search in Google Scholar
14. Noordegraaf, J., Kuijstermans, F. P. A., De Jong, J. P. M. U.S. Patent Application No. 13/122, 960, 2011.Search in Google Scholar
15. Zhai, W., Kim, Y. W., Jung, D. W., Park, C. B. Steam-chest molding of expanded polypropylene foams. 2. Mechanism of interbead bonding. Ind. Eng. Chem. Res. 2011, 50, 5523–5531; https://doi.org/10.1021/ie101753w.Search in Google Scholar
16. Guo, Y., Hossieny, N., Chu, R. K., Park, C. B., Zhou, N. Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chem. Eng. J. 2013, 214, 180–188; https://doi.org/10.1016/j.cej.2012.10.043.Search in Google Scholar
17. Nofar, M., Guo, Y., Park, C. B. Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind. Eng. Chem. Res. 2013, 52, 2297–2303; https://doi.org/10.1021/ie302625e.Search in Google Scholar
18. Trassl, Ch., Altstädt, V. Particle foams: future materials for lightweight construction and design, Kunststoffe 2014, 2, 73e6, https://www.kunststoffe.de/en/journal/archive/article/future-materials-for-lightweight-construction-and-design-797734.html.Search in Google Scholar
19. Park, C. B., Nofar, M. A method for the preparation of PLA bead foams. WO Patent WO2014158014 A1, 2013.Search in Google Scholar
20. Nofar, M., Ameli, A., Park, C. B. Development of polylactide bead foams with double crystal melting peaks. Polymer 2015, 69, 83–94; https://doi.org/10.1016/j.polymer.2015.05.048.Search in Google Scholar
21. Nofar, M., Ameli, A., Park, C. B. A novel technology to manufacture biodegradable polylactide bead foam products. Mater. Des. 2015, 83, 413–421; https://doi.org/10.1016/j.matdes.2015.06.052.Search in Google Scholar
22. Nitta, K. H., Kuriyagawa, M. Thermoplastic polyurethanes. In Handbook of Thermoplastics; Olagoke O., Kolapo A., Eds. CRC Press: Florida, vol. 41, 2016, p. 387.Search in Google Scholar
23. Qi, H. J., Boyce, M. C. Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817–839; https://doi.org/10.1016/j.mechmat.2004.08.001.Search in Google Scholar
24. Gaymans, R. J. Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Prog. Polym. Sci. 2011, 36, 713–748; https://doi.org/10.1016/j.progpolymsci.2010.07.012.Search in Google Scholar
25. Prisacariu, C., Scortanu, E. Int. J. Polym. Anal. Char. 2010, 15, 277; https://doi.org/10.1080/1023666x.2010.493268.Search in Google Scholar
26. Sung, C. S. P., Schneider, N. S. Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes. Macromolecules 1975, 8, 68–73; https://doi.org/10.1021/ma60043a015.Search in Google Scholar
27. Clough, S. B., Schneider, N. S. Structural studies on urethane elastomers. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1968, 2, 553–566; https://doi.org/10.1080/00222346808212458.Search in Google Scholar
28. Shibayama, K., Kodama, M. Effects of concentration of urethane linkage, crosslinking density, and swelling upon the viscoelastic properties of polyurethanes. J. Polym. Sci. 1 Polym. Chem. 1966, 4, 83–108; https://doi.org/10.1002/pol.1966.150040106.Search in Google Scholar
29. Ophir, Z., Wilkes, G. L. SAXS analysis of a linear polyester and a linear polyether urethane—interfacial thickness determination. J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 1469–1480; https://doi.org/10.1002/pol.1980.180180624.Search in Google Scholar
30. Martin, D. J., Meijs, G. F., Renwick, G. M., Gunatillake, P. A., Mccarthy, S. J. Effect of soft‐segment CH2/O ratio on morphology and properties of a series of polyurethane elastomers. J. Appl. Polym. Sci. 1996, 60, 557–571; https://doi.org/10.1002/(sici)1097-4628(19960425)60:4<557::aid-app9>3.0.co;2-n.10.1002/(SICI)1097-4628(19960425)60:4<557::AID-APP9>3.0.CO;2-NSearch in Google Scholar
31. Hepburn, C. Polyurethane Elastomers; Springer Science & Business Media: Germany, 2012.Search in Google Scholar
32. Prisacariu, C. Polyurethane Elastomers: From Morphology to Mechanical Aspects; Springer Science & Business Media: Germany, 2011.10.1007/978-3-7091-0514-6Search in Google Scholar
33. Drobny, J. G. Handbook of Thermoplastic Elastomers; Elsevier: Amsterdam, 2014.10.1016/B978-0-323-22136-8.00013-2Search in Google Scholar
34. McKeen, L. W. The Effect of Creep and Other Time Related Factors on Plastics and Elastomers; Elsevier: Amsterdam, 2009.10.1016/B978-0-8155-1585-2.50010-8Search in Google Scholar
35. Crawford, D. M., Bass, R. G., Haas, T. W. Strain effects on thermal transitions and mechanical properties of thermoplastic polyurethane elastomers. Thermochim. Acta 1998, 323, 53–63; https://doi.org/10.1016/s0040-6031(98)00541-3.Search in Google Scholar
36. Olabisi, O., Adewale, K. Handbook of Thermoplastics; CRC Press: Florida, 2016.10.1201/b19190Search in Google Scholar
37. Petrovic, Z. S. Polyurethanes. In Handbook of Polymer Synthesis; CRC Press: Florida, 2004; pp. 510–546.Search in Google Scholar
38. Schollenberger, C. S., Stewart, F. D. Thermoplastic polyurethane hydrolysis stability. J. Elastoplastics. 1971, 3, 28–56; https://doi.org/10.1177/009524437100300103.Search in Google Scholar
39. Prissok, F., Braun, F. U.S. Patent, Application No. 12/161, 354, 2010.Search in Google Scholar
40. Reinhardt, S. D., Wood, D. M., Wardlaw, A., Robinson, T. K., Whiteman, J. U.S. Patent No. 9,788,606; U.S. Patent and Trademark Office: Washington, DC, 2017.Search in Google Scholar
41. Hossieny, N., Ameli, A., Park, C. B. Characterization of expanded polypropylene bead foams with modified steam-chest molding. Ind. Eng. Chem. Res. 2013, 52, 8236–8247; https://doi.org/10.1021/ie400734j.Search in Google Scholar
42. Hossieny, N. Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism. (Doctoral Dissertation), Universti of Toronto, Toronto, Canada, 2014.Search in Google Scholar
43. Hossieny, N., Shaayegan, V., Ameli, A., Saniei, M., Park, C. B. Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer 2017, 112, 208–218; https://doi.org/10.1016/j.polymer.2017.02.015.Search in Google Scholar
44. Hossieny, N. J., Barzegari, M. R., Nofar, M., Mahmood, S. H., Park, C. B. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 2014, 55, 651–662; https://doi.org/10.1016/j.polymer.2013.12.028.Search in Google Scholar
45. Nema, A. K., Deshmukh, A. V., Palanivelu, K., Sharma, S. K., Malik, T. Effect of exo-and endothermic blowing and wetting agents on morphology, density and hardness of thermoplastic polyurethanes foams. J. Cell. Plast. 2008, 44, 277–292; https://doi.org/10.1177/0021955x07088326.Search in Google Scholar
46. Di Maio, E., Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J. Supercrit. Fluids 2018, 134, 157–166; https://doi.org/10.1016/j.supflu.2017.11.013.Search in Google Scholar
47. Curia, S., De Focatiis, D. S., Howdle, S. M. High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly (ε-caprolactone). Polymer 2015, 69, 17–24; https://doi.org/10.1016/j.polymer.2015.05.026.Search in Google Scholar
48. Sauceau, M., Fages, J., Common, A., Nikitine, C., Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766; https://doi.org/10.1016/j.progpolymsci.2010.12.004.Search in Google Scholar
49. Nofar, M., Park, C. B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721–1741; https://doi.org/10.1016/j.progpolymsci.2014.04.001.Search in Google Scholar
50. Nofar, M., Park, C. B. Polylactide Foams: Fundamentals, Manufacturing, and Applications, William Andrew: Burlington, MA, 2017.Search in Google Scholar
51. Xu, Z. M., Jiang, X. L., Liu, T., Hu, G. H., Zhao, L., Zhu, Z. N., Yuan, W. K. Foaming of polypropylene with supercritical carbon dioxide. J. Supercrit. Fluids 2007, 41, 299–310; https://doi.org/10.1016/j.supflu.2006.09.007.Search in Google Scholar
52. Zhai, W., Ko, Y., Zhu, W., Wong, A., Park, C. B. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int. J. Mol. Sci. 2009, 10, 5381–5397; https://doi.org/10.3390/ijms10125381.Search in Google Scholar
53. Zhai, W., Yu, J., Ma, W., He, J. Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polym. Eng. Sci. 2007, 47, 1338–1343; https://doi.org/10.1002/pen.20816.Search in Google Scholar
54. Nofar, M., Tabatabaei, A., Ameli, A., Park, C. B. Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer 2013, 54, 6471–6478; https://doi.org/10.1016/j.polymer.2013.09.044.Search in Google Scholar
55. Nofar, M., Ameli, A., Park, C. B. The Thermal Behavior of Polylactide with Different D‐Lactide Content in the Presence of Dissolved CO2. Macromol. Mater. Eng. 2014, 299, 1232–1239; https://doi.org/10.1002/mame.201300474.Search in Google Scholar
56. Nofar, M., Zhu, W., Park, C. B. Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 2012, 53, 3341–3353; https://doi.org/10.1016/j.polymer.2012.04.054.Search in Google Scholar
57. Nofar, M., Tabatabaei, A., Park, C. B. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 2013, 54, 2382–2391; https://doi.org/10.1016/j.polymer.2013.02.049.Search in Google Scholar
58. Ito, S., Matsunaga, K., Tajima, M., Yoshida, Y. Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 2007, 106, 3581–3586; https://doi.org/10.1002/app.26854.Search in Google Scholar
59. Ge, C., Wang, S., Zheng, W., Zhai, W. Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property. Poly. Eng. Sci. 2018, 58, E158–E166; https://doi.org/10.1002/pen.24813.Search in Google Scholar
60. Zhao, D., Wang, G., Wang, M. Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. Polym. Eng. Sci. 2018, 135, 46327; https://doi.org/10.1002/app.46327.Search in Google Scholar
61. Ghariniyat, P., Leung, S. N. Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Compos. B Eng. 2018, 143, 9–18; https://doi.org/10.1016/j.compositesb.2018.02.008.Search in Google Scholar
62. Yeh, S. K., Liu, Y. C., Wu, W. Z., Chang, K. C., Guo, W. J., Wang, S. F. Thermoplastic polyurethane/clay nanocomposite foam made by batch foaming. J. Cell. Plast. 2013, 49, 119–130; https://doi.org/10.1177/0021955x13477432.Search in Google Scholar
63. Ge, C., Ren, Q., Wang, S., Zheng, W., Zhai, W., Park, C. B. Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chem. Eng. Sci. 2017, 174, 337–346; https://doi.org/10.1016/j.ces.2017.09.011.Search in Google Scholar
64. Nofar, M., Kucuk, E. B., Bati, B. Effect of hard segment content on the microcellular bead foaming behavior of TPU using supercritical CO2. J. Supercrit. Fluids 2019, 153, 104590; https://doi.org/10.1016/j.supflu.2019.104590.Search in Google Scholar
65. Nofar, M., Bati, B., Kucuk, E. B., Jalali, A. Effect of soft segment molecular weight on the microcellular foaming behavior of TPU using supercritical CO2. J. Supercrit. Fluids 2020, 160, 104816; https://doi.org/10.1016/j.supflu.2020.104816.Search in Google Scholar
66. Nofar, M., Majithiya, K., Kuboki, T., Park, C. B. The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. J. Cell. Plast. 2012, 48, 271–287; https://doi.org/10.1177/0021955x12440271.Search in Google Scholar
67. Okolieocha, C., Raps, D., Subramaniam, K., Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. Eur. Polym. J. 2015, 73, 500–519; https://doi.org/10.1016/j.eurpolymj.2015.11.001.Search in Google Scholar
68. Bagdi, K., Molnár, K., Sajo, I., Pukánszky, B. Specific interactions, structure and properties in segmented polyurethane elastomers. Express Polym. Lett. 2011, 5; https://doi.org/10.3144/expresspolymlett.2011.41.Search in Google Scholar
69. Frick, A., Rochman, A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test. 2004, 23, 413–417; https://doi.org/10.1016/j.polymertesting.2003.09.013.Search in Google Scholar
70. Zhai, W., Kuboki, T., Wang, L., Park, C. B., Lee, E. K., Naguib, H. E. Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Ind. Eng. Chem. Res. 2010, 49, 9834–9845; https://doi.org/10.1021/ie101225f.Search in Google Scholar
71. Matsunaga, K., Sato, K., Tajima, M., Yoshida, Y. Gas permeability of thermoplastic polyurethane elastomers. Poly. J. 2005, 37, 413–417; https://doi.org/10.1295/polymj.37.413.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure
Articles in the same Issue
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure