Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
-
Ying Li
, Pan Pan
, Chao Liu , Wenying Zhou , Chenggong Li , Changdan Gong , Huilu Li , Liang Zhang and Hui Song
Abstract
Polymer dispersed liquid crystalline (PDLC) membrane with intrinsic thermal conductivity was prepared by dispersing liquid crystalline polysiloxane containing crosslinked structure (liquid crystalline polysiloxane elastomer (LCPE)) into polyvinyl alcohol (PVA). Chemical structures were characterized by Fourier transform infrared (FT-IR) and 1H-NMR, and microscopic structures were analyzed by polarizing optical microscope (POM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The thermal conductivity of PDLC membrane was characterized by hot disk thermal constants analyzer, and the tensile properties were measured by tensile testing machine. Thermal properties were characterized by differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA). The results show that LCPE was dispersed in PVA uniformly, and the mesogenic monomer of LCPE formed microscopic ordered structures in PDLC membrane. Meanwhile, hydrogen-bond interaction was formed between LCPE and PVA chain. Both microscopic-ordered structure and the hydrogen-bond interaction improved the phonon transmission path, and the thermal conductivity of PDLC membrane was up to 0.74 W/m⋅K, which was 6 times higher than that of pure PVA film. PDLC membrane possessed proper tensile strength and elongation at break, respectively 5.18 MPa and 338%. As a result, PDLC membrane can be used as thermal conductive membrane in electronic packaging and other related fields.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51903207, 51577154
Funding source: Priority Research and Development Foundations of Shaanxi Provincial Government
Award Identifier / Grant number: 2018GY-174, 2018GY-115
Funding source: Science and Technology activity Foundation for overseas person of Shaanxi Provincial Government
Award Identifier / Grant number: 2017030
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors would like to thank the National Natural Science Foundation of China (project nos. 51903207 and 51577154), Priority Research and Development Foundations of Shaanxi Provincial Government (project nos. 2018GY-174 and 2018GY-115), the Science and Technology Activity Foundation for overseas person of Shaanxi Provincial Government (project no. 2017030) for financial support of this work.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Krakhalev, M. N., Prishchepa, O. O., Sutormin, V. S., Zyryanov, V. Y. Opt. Mater. 2019, 89, 1–4; https://doi.org/10.1016/j.optmat.2019.01.004.Search in Google Scholar
2. Zhou, W. Y., Kou, Y. J., Yuan, M. X., Li, B., Cai, H. W., Li, Z., Chen, F., Liu, X. G., Wang, G. H., Chen, Q. G., Dang, Z. M. Compos. Sci. Technol. 2019, 181, 107686; https://doi.org/10.1016/j.compscitech.2019.107686.Search in Google Scholar
3. Ahmad, F., Jamil, M., Jae Jeon, Y. Arabian J. Chem. 2017, 10, S3394–S3401; https://doi.org/10.1016/j.arabjc.2014.01.022.Search in Google Scholar
4. Prusińska-Kurstak, E., Kołakowska, A., Kłosowicz, S. J. J. Mol. Liq. 2018, 267, 127–130. https://doi.org/10.1016/j.molliq.2018.03.087.Search in Google Scholar
5. Yang, X. T., Liang, C. B., Ma, T. B., Guo, Y. Q., Kong, J., Gu, J. W., Chen, M. J., Zhu, J. H. Adv. Compos. Hybrid Mater. 2018, 1, 207–230; https://doi.org/10.1007/s42114-018-0031-8.Search in Google Scholar
6. Pashayi, K., Fard, H. R., Lai, F. Y., Iruvanti, S., Plawsky, J., Borca-Tasciuc, T. Nanoscale 2014, 6, 4292–4296; https://doi.org/10.1039/c3nr06494h.Search in Google Scholar PubMed
7. Zhou, Y. C., Wang, H., Wang, L., Yu, K., Lin, Z. D., He, L., Bai, Y. Y. Mater. Sci. Eng. B 2012, 177, 892–896; https://doi.org/10.1016/j.mseb.2012.03.056.Search in Google Scholar
8. Yung, K. C., Liem, H. J. Appl. Polym. Sci. 2007, 106, 3587–3591; https://doi.org/10.1002/app.27027.Search in Google Scholar
9. Li, Y., Li, C. G., Zhang, L., Zhou, W. Y. J. Mater. Sci.: Mater. Electron. 2019, 30, 8329–8338; https://doi.org/10.1007/s10854-019-01150-1.Search in Google Scholar
10. Zhao, J. N., Tan, A. T., Green, P. F. J. Mater. Chem. C 2017, 5; https://doi.org/10.1039/c7tc03240d.Search in Google Scholar
11. Zhao, T. B., Zhang, X. L. Polym. Compos. 2018, 39, 1041–1050; https://doi.org/10.1002/pc.24031.Search in Google Scholar
12. Liu, Y., Chen, J. M., Zhang, Y. H., Gao, S., Lu, Z. J., Xue, Q. B. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1813–1821; https://doi.org/10.1002/polb.24414.Search in Google Scholar
13. Muthaiah, R., Garg, J. J. Appl. Phys. 2018, 124, 105102; https://doi.org/10.1063/1.5041000.Search in Google Scholar
14. Chowdhury, R., Rai, A., Glynn, E., Morgan, P., Moore, A., Youngblood, J. P. Polymer 2019, 164, 17–25; https://doi.org/10.1016/j.polymer.2019.01.006.Search in Google Scholar
15. Hasegawa, M., Shigeta, K., Ishii, J. Polym. Adv. Technol. 2019, 30, 128–142; https://doi.org/10.1002/pat.4451.Search in Google Scholar
16. Kang, Y., Ahn, Y. J., Kim, M. S., Kim, B. G. Fibers Polym. 2018, 19, 1143–1149; https://doi.org/10.1007/s12221-018-8010-9.Search in Google Scholar
17. Zhang, L., Ruesch, M., Zhang, X. L., Bai, Z. T., Liu, L. RSC Adv. 2015, 5, 87981–87986; https://doi.org/10.1039/c5ra18519j.Search in Google Scholar
18. Bai, L., Zhao, X., Bao, R. Y., Liu, Z. Y., Yang, M. B., Yang, W. J. Mater. Sci. 2018, 53, 10543–10553; https://doi.org/10.1007/s10853-018-2306-4.Search in Google Scholar
19. Luo, D. C., Huang, C. L., Huang, Z. J. Heat Transfer 2018, 140, 031302; https://doi.org/10.1115/1.4038003.Search in Google Scholar
20. Shingo, T., Fusao, H., Takezawa, Y., Kanie, K., Muramatsu, A. ACS Omega 2018, 3, 3562–3570. https://doi.org/10.1021/acsomega.7b02088.Search in Google Scholar PubMed PubMed Central
21. Zhanga, R. C., Huanga, Z. H., Sun, D., Ji, D. H., Zhong, M. L., Zang, D. M., Xu, J. Z., Wan, Y. Z., Lu, A. Polymer 2018, 154, 42–47; https://doi.org/10.1016/j.polymer.2018.08.078.Search in Google Scholar
22. Tu, R. C., Liao, Q. W., Zeng, L. P., Liu, Z. C., Liu, W. Appl. Phys. Lett. 2017, 110, 101905; https://doi.org/10.1063/1.4978206.Search in Google Scholar
23. Guo, H., Li, X., Wang, ZY., Li, B. A., Wang, J. X., Wang, S. C. Chin. J. Chem. Eng. 2018, 26, 1213–1218; https://doi.org/10.1016/j.cjche.2017.12.015.Search in Google Scholar
24. Sawada, T., Murata, Y., Marubayashi, H., Nojima, S., Morikawa, J., Serizawa, T. Viruses 2018, 10, 608; https://doi.org/10.3390/v10110608.Search in Google Scholar PubMed PubMed Central
25. Liu, Y. V., Chen, J. M., Qi, Y. X., Gao, S., Balaji, K., Zhang, Y. H., Xue, Q. B., Lu, Z. J. Polymer 2018, 145, 252–260; https://doi.org/10.1016/j.polymer.2018.05.004.Search in Google Scholar
26. Olivier, J. H., Barbera, J., Bahaidarah, E., Harriman, A., Ziessel, R. J. Am. Chem. Soc. 2012, 134, 6100−6103; https://doi.org/10.1021/ja3007935.Search in Google Scholar PubMed
27. Zeng, Y., Khodadadi, J. M Energy Fuels 2018, 32, 11253–11260; https://doi.org/10.1021/acs.energyfuels.8b02500.Search in Google Scholar
28. Shi, R., Bin, Y. Z., Jian, X. G. Polym. Bull. 2018, 75, 947–962; https://doi.org/10.1007/s00289-017-2073-4.Search in Google Scholar
29. Feng, Y. H., Zou, H. Y., Qiu, L., Zhang, X. X. Comput. Mater. Sci. 2019, 158, 14–19; https://doi.org/10.1016/j.commatsci.2018.11.012.Search in Google Scholar
30. Wei, X. F., Luo, T. F. Phys. Chem. Chem. Phys. 2018, 20, 20534–20539; https://doi.org/10.1039/c8cp03433h.Search in Google Scholar PubMed
31. Trefon-Radziejewska, D., Hamaoui, G., Chirtoc, M., Horny, N., Smokal, V., Biitseva, A., Krupka, O., Derkowska-Zielinska, B. Mater. Chem. Phys. 2019, 223, 700–707; https://doi.org/10.1016/j.matchemphys.2018.11.054.Search in Google Scholar
32. Somdee, P., Lassuú-Kuknyó, T., Kónya, C., Szabó, T., Marossy, K. J. Therm. Anal. Calorim. 2019, 138, 1003–1010. https://doi.org/10.1007/s10973-019-08183-y.Search in Google Scholar
33. Xu, Y. F., Wang, X. X., Zhou, J. W., Song, B., Jiang, Z., Lee, E. M. Y., Huberman, S., Gleason, K. K., Chen, G. Sci. Adv. 2018, 4, 3031; https://doi.org/10.1126/sciadv.aar3031.Search in Google Scholar PubMed PubMed Central
34. Li, R., Shana, Z. Polym. Test. 2018, 69, 125–132. https://doi.org/10.1016/j.polymertesting.2018.05.024.Search in Google Scholar
35. Xu, Y., Zhang, S. D., Wang, P., Wang, J. S. Polymer 2018, 154, 258–271; https://doi.org/10.1016/j.polymer.2018.09.025.Search in Google Scholar
36. Mehra, N., Kashfipour, M. A., Zhu, J. H. Appl. Mater. Today2018, 13, 207–216; https://doi.org/10.1016/j.apmt.2018.09.007.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure
Articles in the same Issue
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure