Startseite Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity

  • Ying Li ORCID logo EMAIL logo , Pan Pan , Chao Liu , Wenying Zhou , Chenggong Li , Changdan Gong , Huilu Li , Liang Zhang und Hui Song
Veröffentlicht/Copyright: 27. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polymer dispersed liquid crystalline (PDLC) membrane with intrinsic thermal conductivity was prepared by dispersing liquid crystalline polysiloxane containing crosslinked structure (liquid crystalline polysiloxane elastomer (LCPE)) into polyvinyl alcohol (PVA). Chemical structures were characterized by Fourier transform infrared (FT-IR) and 1H-NMR, and microscopic structures were analyzed by polarizing optical microscope (POM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The thermal conductivity of PDLC membrane was characterized by hot disk thermal constants analyzer, and the tensile properties were measured by tensile testing machine. Thermal properties were characterized by differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA). The results show that LCPE was dispersed in PVA uniformly, and the mesogenic monomer of LCPE formed microscopic ordered structures in PDLC membrane. Meanwhile, hydrogen-bond interaction was formed between LCPE and PVA chain. Both microscopic-ordered structure and the hydrogen-bond interaction improved the phonon transmission path, and the thermal conductivity of PDLC membrane was up to 0.74 W/m⋅K, which was 6 times higher than that of pure PVA film. PDLC membrane possessed proper tensile strength and elongation at break, respectively 5.18 MPa and 338%. As a result, PDLC membrane can be used as thermal conductive membrane in electronic packaging and other related fields.


Corresponding author: Ying Li, College of Material Science and Engineering, Xi’an University of Science and Technology, Xi’an, 710054, Shaan Xi, China, E-mail:

Award Identifier / Grant number: 51903207, 51577154

Funding source: Priority Research and Development Foundations of Shaanxi Provincial Government

Award Identifier / Grant number: 2018GY-174, 2018GY-115

Funding source: Science and Technology activity Foundation for overseas person of Shaanxi Provincial Government

Award Identifier / Grant number: 2017030

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank the National Natural Science Foundation of China (project nos. 51903207 and 51577154), Priority Research and Development Foundations of Shaanxi Provincial Government (project nos. 2018GY-174 and 2018GY-115), the Science and Technology Activity Foundation for overseas person of Shaanxi Provincial Government (project no. 2017030) for financial support of this work.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Krakhalev, M. N., Prishchepa, O. O., Sutormin, V. S., Zyryanov, V. Y. Opt. Mater. 2019, 89, 1–4; https://doi.org/10.1016/j.optmat.2019.01.004.Suche in Google Scholar

2. Zhou, W. Y., Kou, Y. J., Yuan, M. X., Li, B., Cai, H. W., Li, Z., Chen, F., Liu, X. G., Wang, G. H., Chen, Q. G., Dang, Z. M. Compos. Sci. Technol. 2019, 181, 107686; https://doi.org/10.1016/j.compscitech.2019.107686.Suche in Google Scholar

3. Ahmad, F., Jamil, M., Jae Jeon, Y. Arabian J. Chem. 2017, 10, S3394–S3401; https://doi.org/10.1016/j.arabjc.2014.01.022.Suche in Google Scholar

4. Prusińska-Kurstak, E., Kołakowska, A., Kłosowicz, S. J. J. Mol. Liq. 2018, 267, 127–130. https://doi.org/10.1016/j.molliq.2018.03.087.Suche in Google Scholar

5. Yang, X. T., Liang, C. B., Ma, T. B., Guo, Y. Q., Kong, J., Gu, J. W., Chen, M. J., Zhu, J. H. Adv. Compos. Hybrid Mater. 2018, 1, 207–230; https://doi.org/10.1007/s42114-018-0031-8.Suche in Google Scholar

6. Pashayi, K., Fard, H. R., Lai, F. Y., Iruvanti, S., Plawsky, J., Borca-Tasciuc, T. Nanoscale 2014, 6, 4292–4296; https://doi.org/10.1039/c3nr06494h.Suche in Google Scholar PubMed

7. Zhou, Y. C., Wang, H., Wang, L., Yu, K., Lin, Z. D., He, L., Bai, Y. Y. Mater. Sci. Eng. B 2012, 177, 892–896; https://doi.org/10.1016/j.mseb.2012.03.056.Suche in Google Scholar

8. Yung, K. C., Liem, H. J. Appl. Polym. Sci. 2007, 106, 3587–3591; https://doi.org/10.1002/app.27027.Suche in Google Scholar

9. Li, Y., Li, C. G., Zhang, L., Zhou, W. Y. J. Mater. Sci.: Mater. Electron. 2019, 30, 8329–8338; https://doi.org/10.1007/s10854-019-01150-1.Suche in Google Scholar

10. Zhao, J. N., Tan, A. T., Green, P. F. J. Mater. Chem. C 2017, 5; https://doi.org/10.1039/c7tc03240d.Suche in Google Scholar

11. Zhao, T. B., Zhang, X. L. Polym. Compos. 2018, 39, 1041–1050; https://doi.org/10.1002/pc.24031.Suche in Google Scholar

12. Liu, Y., Chen, J. M., Zhang, Y. H., Gao, S., Lu, Z. J., Xue, Q. B. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1813–1821; https://doi.org/10.1002/polb.24414.Suche in Google Scholar

13. Muthaiah, R., Garg, J. J. Appl. Phys. 2018, 124, 105102; https://doi.org/10.1063/1.5041000.Suche in Google Scholar

14. Chowdhury, R., Rai, A., Glynn, E., Morgan, P., Moore, A., Youngblood, J. P. Polymer 2019, 164, 17–25; https://doi.org/10.1016/j.polymer.2019.01.006.Suche in Google Scholar

15. Hasegawa, M., Shigeta, K., Ishii, J. Polym. Adv. Technol. 2019, 30, 128–142; https://doi.org/10.1002/pat.4451.Suche in Google Scholar

16. Kang, Y., Ahn, Y. J., Kim, M. S., Kim, B. G. Fibers Polym. 2018, 19, 1143–1149; https://doi.org/10.1007/s12221-018-8010-9.Suche in Google Scholar

17. Zhang, L., Ruesch, M., Zhang, X. L., Bai, Z. T., Liu, L. RSC Adv. 2015, 5, 87981–87986; https://doi.org/10.1039/c5ra18519j.Suche in Google Scholar

18. Bai, L., Zhao, X., Bao, R. Y., Liu, Z. Y., Yang, M. B., Yang, W. J. Mater. Sci. 2018, 53, 10543–10553; https://doi.org/10.1007/s10853-018-2306-4.Suche in Google Scholar

19. Luo, D. C., Huang, C. L., Huang, Z. J. Heat Transfer 2018, 140, 031302; https://doi.org/10.1115/1.4038003.Suche in Google Scholar

20. Shingo, T., Fusao, H., Takezawa, Y., Kanie, K., Muramatsu, A. ACS Omega 2018, 3, 3562–3570. https://doi.org/10.1021/acsomega.7b02088.Suche in Google Scholar PubMed PubMed Central

21. Zhanga, R. C., Huanga, Z. H., Sun, D., Ji, D. H., Zhong, M. L., Zang, D. M., Xu, J. Z., Wan, Y. Z., Lu, A. Polymer 2018, 154, 42–47; https://doi.org/10.1016/j.polymer.2018.08.078.Suche in Google Scholar

22. Tu, R. C., Liao, Q. W., Zeng, L. P., Liu, Z. C., Liu, W. Appl. Phys. Lett. 2017, 110, 101905; https://doi.org/10.1063/1.4978206.Suche in Google Scholar

23. Guo, H., Li, X., Wang, ZY., Li, B. A., Wang, J. X., Wang, S. C. Chin. J. Chem. Eng. 2018, 26, 1213–1218; https://doi.org/10.1016/j.cjche.2017.12.015.Suche in Google Scholar

24. Sawada, T., Murata, Y., Marubayashi, H., Nojima, S., Morikawa, J., Serizawa, T. Viruses 2018, 10, 608; https://doi.org/10.3390/v10110608.Suche in Google Scholar PubMed PubMed Central

25. Liu, Y. V., Chen, J. M., Qi, Y. X., Gao, S., Balaji, K., Zhang, Y. H., Xue, Q. B., Lu, Z. J. Polymer 2018, 145, 252–260; https://doi.org/10.1016/j.polymer.2018.05.004.Suche in Google Scholar

26. Olivier, J. H., Barbera, J., Bahaidarah, E., Harriman, A., Ziessel, R. J. Am. Chem. Soc. 2012, 134, 6100−6103; https://doi.org/10.1021/ja3007935.Suche in Google Scholar PubMed

27. Zeng, Y., Khodadadi, J. M Energy Fuels 2018, 32, 11253–11260; https://doi.org/10.1021/acs.energyfuels.8b02500.Suche in Google Scholar

28. Shi, R., Bin, Y. Z., Jian, X. G. Polym. Bull. 2018, 75, 947–962; https://doi.org/10.1007/s00289-017-2073-4.Suche in Google Scholar

29. Feng, Y. H., Zou, H. Y., Qiu, L., Zhang, X. X. Comput. Mater. Sci. 2019, 158, 14–19; https://doi.org/10.1016/j.commatsci.2018.11.012.Suche in Google Scholar

30. Wei, X. F., Luo, T. F. Phys. Chem. Chem. Phys. 2018, 20, 20534–20539; https://doi.org/10.1039/c8cp03433h.Suche in Google Scholar PubMed

31. Trefon-Radziejewska, D., Hamaoui, G., Chirtoc, M., Horny, N., Smokal, V., Biitseva, A., Krupka, O., Derkowska-Zielinska, B. Mater. Chem. Phys. 2019, 223, 700–707; https://doi.org/10.1016/j.matchemphys.2018.11.054.Suche in Google Scholar

32. Somdee, P., Lassuú-Kuknyó, T., Kónya, C., Szabó, T., Marossy, K. J. Therm. Anal. Calorim. 2019, 138, 1003–1010. https://doi.org/10.1007/s10973-019-08183-y.Suche in Google Scholar

33. Xu, Y. F., Wang, X. X., Zhou, J. W., Song, B., Jiang, Z., Lee, E. M. Y., Huberman, S., Gleason, K. K., Chen, G. Sci. Adv. 2018, 4, 3031; https://doi.org/10.1126/sciadv.aar3031.Suche in Google Scholar PubMed PubMed Central

34. Li, R., Shana, Z. Polym. Test. 2018, 69, 125–132. https://doi.org/10.1016/j.polymertesting.2018.05.024.Suche in Google Scholar

35. Xu, Y., Zhang, S. D., Wang, P., Wang, J. S. Polymer 2018, 154, 258–271; https://doi.org/10.1016/j.polymer.2018.09.025.Suche in Google Scholar

36. Mehra, N., Kashfipour, M. A., Zhu, J. H. Appl. Mater. Today2018, 13, 207–216; https://doi.org/10.1016/j.apmt.2018.09.007.Suche in Google Scholar

Received: 2020-01-24
Accepted: 2020-05-14
Published Online: 2020-07-27
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0004/html?lang=de
Button zum nach oben scrollen