Home Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications
Article
Licensed
Unlicensed Requires Authentication

Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications

  • Pınar Terzioglu , Yasin Altin ORCID logo , Ayse Kalemtas EMAIL logo and Ayse Celik Bedeloglu ORCID logo EMAIL logo
Published/Copyright: January 13, 2020
Become an author with De Gruyter Brill

Abstract

Recently, due to sustainable development and environmental protection policies, there is increasing interest in the development of new biodegradable polymer-based multifunctional composites. Chitosan is one of the most remarkable and preferred biopolymers, which is environmentally friendly as well as renewable, biocompatible, and inexpensive. Though it has a wide range of potential applications, the major limitation of chitosan – the problem of poor mechanical performance – needs to be solved. In this work, graphene oxide was first produced and then used to manufacture a chitosan/graphene oxide/zinc oxide composite film through a casting method. The properties of the chitosan film and the chitosan/graphene oxide/zinc oxide composite film were investigated using Fourier transform infrared spectroscopy, mechanical, thermal gravimetric, and ultraviolet (UV)-visible spectroscopy analyses. The results showed that the incorporation of graphene oxide and zinc oxide into the chitosan matrix resulted in enhanced mechanical properties and thermal stability of chitosan biocomposite films. The graphene oxide- and zinc oxide-reinforced chitosan film showed 2527 MPa and 55.72 MPa of Young’s modulus and tensile strength, respectively, while neat chitosan showed only 1549 MPa and 37.91 MPa of Young’s modulus and tensile strength, respectively. Conversely, the addition of graphene oxide decreased the transmittance, notably in the UV region.

Acknowledgments

The authors would like to thank Dr. Ertugrul Erkoc from Advanced Micro Reaction Technologies (ADMIRE-TECH) for providing the ZnO nanoparticles.

References

[1] Choi I, Chang Y, Shin SH, Joo E, Song HJ, Eom H, Han J. Int. J. Mol. Sci. 2017, 18, 1278.10.3390/ijms18061278Search in Google Scholar PubMed PubMed Central

[2] Rhim JW, Ng PKW. Crit. Rev. Food Sci. Nutr. 2007, 47, 411–433.10.1080/10408390600846366Search in Google Scholar PubMed

[3] Grande CD, Mangadlao J, Fan JJ, De Leon A, Delgado-Ospina J, Rojas JG, Rodrigues DF, Advincula R. Macromol. Symp. 2017, 374, 1600114.10.1002/masy.201600114Search in Google Scholar

[4] Lim HN, Huang NM, Loo CH. J. Non-Cryst. Solids 2012, 358, 525–530.10.1016/j.jnoncrysol.2011.11.007Search in Google Scholar

[5] Javadi A, Zheng Q, Payen F, Javadi A, Altin Y, Cai Z, Sabo R, Gong S. ACS Appl. Mater. Interfaces 2013, 5, 5969–5575.10.1021/am400171ySearch in Google Scholar PubMed

[6] Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhaes FD. Polym. Int. 2013, 62, 33–40.10.1002/pi.4290Search in Google Scholar

[7] Tas M, Altin Y, Celik Bedeloglu A. Diam. Relat. Mater. 2019, 92, 242–247.10.1016/j.diamond.2019.01.009Search in Google Scholar

[8] Pandele AM, Ionita M, Crica L, Dinescu S, Costache M, Iovu H. Carbohydr. Polym. 2014, 102, 813–820.10.1016/j.carbpol.2013.10.085Search in Google Scholar PubMed

[9] Ebrahimiasl S, Zakaria A, Kassim A, Basri SN. Int. J. Nanomed. 2015, 10, 217–227.Search in Google Scholar

[10] Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Appl. Phys. Lett. 2007, 90, 213902-1–213902-3.Search in Google Scholar

[11] Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chemosphere 2017, 168, 408–417.10.1016/j.chemosphere.2016.10.033Search in Google Scholar PubMed

[12] Liu S, Yao F, Oderinde O, Li K, Wang H, Zhang Z, Fu G. Chem. Eng. J. 2017, 321, 502–509.10.1016/j.cej.2017.03.087Search in Google Scholar

[13] Han Lyn F, Chin Peng T, Ruzniza MZ, Nur Hanani ZA. Food Packag. Shelf Life 2019, 21, 100373.10.1016/j.fpsl.2019.100373Search in Google Scholar

[14] Xie D, Liu Q, Xu D, Ren D, Wu X. J. Appl. Polym. Sci. 2019, 136, 47748.10.1002/app.47748Search in Google Scholar

[15] Indumathi MP, Saral Sarojini K, Rajarajeswari GR. Int. J. Biol. Macromol. 2019, 132, 1112–1120.10.1016/j.ijbiomac.2019.03.171Search in Google Scholar PubMed

[16] Hezma AM, Rajeh A, Mannaa MA. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123821.10.1016/j.colsurfa.2019.123821Search in Google Scholar

[17] Viorica GP, Musat V, Pimentel A, Calmeiro TR, Carlos E, Baroiu L, Martins B, Fortunato E. J. Alloys Compd. 2019, 803, 922–933.10.1016/j.jallcom.2019.06.373Search in Google Scholar

[18] Murali S, Kumar S, Koh J, Seena S, Singh P, Ramalho A, Sobral AFJN. Cellulose 2019, 26, 5347–5361.10.1007/s10570-019-02457-2Search in Google Scholar

[19] Sheshmani S, Nejabat Ghamsari H. Int. J. Environ. Anal. Chem. 2019, 1–10. doi: 10.1080/03067319.2019.1645840.Search in Google Scholar

[20] Chowdhuri AR, Tripathy S, Chandra S, Roy S, Sahu SK. RSC Adv. 2015, 5, 49420–49428.10.1039/C5RA05393ESearch in Google Scholar

[21] Liu SL, Yao F, Oderinde O, Li KW, Wang HJ, Zhang ZH, Fu G. Chem. Eng. J. 2017, 321, 502–509.10.1016/j.cej.2017.03.087Search in Google Scholar

[22] Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano 2010, 4, 4806–4814.10.1021/nn1006368Search in Google Scholar PubMed

[23] Tas M, Altin Y, Bedeloglu A. J. Text Inst. 2019, 110, 67–73.10.1080/00405000.2018.1460039Search in Google Scholar

[24] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Carbon N. Y. 2006, 44, 3342–3347.10.1016/j.carbon.2006.06.004Search in Google Scholar

[25] Layek RK, Samanta S, Nandi AK. Polymer (Guildf) 2012, 53, 2265–2273.10.1016/j.polymer.2012.03.048Search in Google Scholar

[26] El Achaby M, Essamlali Y, El Miri N, Snik A, Abdelouahdi K, Fihri A, Zahouily M, Solhy A. J. Appl. Polym. Sci. 2014, 131. doi: 10.1002/app.41042.Search in Google Scholar

[27] Sun LJ, Sun JJ, Chen L, Niu PF, Yang XB, Guo YR. Carbohydr. Polym. 2017, 163, 81–91.10.1016/j.carbpol.2017.01.016Search in Google Scholar PubMed

[28] Zuo PP, Feng HF, Xu ZZ, Zhang LF, Zhang YL, Xia W, Zhang WQ. Chem. Cent. J. 2013, 7. doi: 10.1186/1752-153x-7-39.Search in Google Scholar

[29] Rahman PM, Mujeeb VMA, Muraleedharan K, Thomas SK. Arab J. Chem. 2018, 11, 120–127.10.1016/j.arabjc.2016.09.008Search in Google Scholar

[30] Kumar ASK, Jiang SJ. J. Environ. Chem. Eng. 2016, 4, 1698–1713.10.1016/j.jece.2016.02.035Search in Google Scholar

[31] Ren PG, Yan DX, Ji X, Chen T, Li ZM. Nanotechnology 2011, 22, 055705.10.1088/0957-4484/22/5/055705Search in Google Scholar PubMed

[32] Jia J, Gai Y, Wang W, Zhao Y. Ultrason. Sonochem. 2016, 32, 300–306.10.1016/j.ultsonch.2016.03.027Search in Google Scholar PubMed

[33] Wang SF, Shen L, Zhang WD, Tong YJ. Biomacromolecules 2005, 6, 3067–3072.10.1021/bm050378vSearch in Google Scholar PubMed

[34] Sanuja S, Agalya A, Umapathy MJ. Int. J. Biol. Macromol. 2015, 74, 76–84.10.1016/j.ijbiomac.2014.11.036Search in Google Scholar PubMed

[35] Das K, Maiti S, Liu D. J. Inst. Eng. Ser. D 2014, 95, 35–41.10.1007/s40033-014-0033-9Search in Google Scholar

Received: 2019-07-23
Accepted: 2019-12-01
Published Online: 2020-01-13
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0240/html
Scroll to top button