Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
Abstract
The citrate-based thermoset elastomer is a promising candidate for bone scaffold material, but the harsh curing condition made it difficult to fabricate porous structure. Recently, poly (1, 8-octanediol-co-Pluronic F127 citrate) (POFC) porous scaffold was creatively fabricated by chitin nanofibrils (ChiNFs) supported emulsion-freeze-casting. Thanks to the supporting role of ChiNFs, the lamellar pore structure formed by directional freeze-drying was maintained during the subsequent thermocuring. Herein, bioactive glass (BG) was introduced into the POFC porous scaffolds to improve bioactivity. It was found the complete replacement of ChiNF particles with BG particles could not form a stable porous structure; however, existing at least 15 wt% ChiNF could ensure the formation of lamellar pore, and the interlamellar distance increased with BG ratios. Thus, the BG granules did not contribute to the formation of pore structure like ChiNFs, however, they surely endowed the scaffolds with enhanced mechanical properties, improved osteogenesis bioactivity, better cytocompatibility as well as quick degradation rate. Reasonably adjusting BG ratios could balance the requirements of porous structure and bioactivity.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51303024
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by the program from the National Natural Science Foundation of China (grant no. 51303024).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Tang, D., Tare, R. S., Yang, L. Y., Williams, D. F., Ou, K. L., Oreffo, R. O., 2016. Biomaterials83, 363–382. http://doi.org/10.1016/j.biomaterials.2016.01.024.10.1016/j.biomaterials.2016.01.024Suche in Google Scholar PubMed
2. Eglin, D., Mortisen, D., Alini, M., 2009. Soft. Matter5, 938–947. http://doi.org/10.1039/b803718n.10.1039/b803718nSuche in Google Scholar
3. Puppi, D., Chiellini, F., Piras, A. M., Chiellini, E., 2010. Prog. Polym. Sci.35, 403–440. http://doi.org/10.1016/j.progpolymsci.2010.01.006.10.1016/j.progpolymsci.2010.01.006Suche in Google Scholar
4. Hu, Y. Y., Tirrell, D. A., 2010. PNAS107, 22425–22429. http://doi.org/10.1073/pnas.1009219107.10.1073/pnas.1009219107Suche in Google Scholar PubMed PubMed Central
5. Qiu, H., Yang, J., Kodali, P., Koh, J., Ameer, G. A., 2006. Biomaterials27, 5845–5854. http://doi.org/10.1016/j.biomaterials.2006.07.042.10.1016/j.biomaterials.2006.07.042Suche in Google Scholar PubMed
6. Tang, J., Guo, J., Zhen, L., Yang, C., Xie, D., Chen, J., Li, S., Li, S., Kim, G. B., Bai, X., et al., 2015. J. Mater. Chem. B3, 5569–5576. http://doi.org/10.1039/c5tb00607d.10.1039/C5TB00607DSuche in Google Scholar PubMed PubMed Central
7. Chung, E. J., Qiu, H., Kodali, P., Yang, S., Sprague, S. M., Hwong, J., 2011. J. Biomed. Mater. Res. A96, 29–37. http://doi.org/10.1002/jbm.a.32953.10.1002/jbm.a.32953Suche in Google Scholar PubMed PubMed Central
8. Chung, E. J., Kodali, P., Laskin, W., Koh, J., 2011. J. Mater. Sci. Mater. M.22, 2131–2138. http://doi.org/10.1007/s10856-011-4393-5.10.1007/s10856-011-4393-5Suche in Google Scholar PubMed
9. Jeong, C. G., Zhang, H., Hollister, S. J., 2011. Acta Biomater7, 505–514. http://doi.org/10.1016/j.actbio.2010.08.027.10.1016/j.actbio.2010.08.027Suche in Google Scholar PubMed
10. Gyawali, D., Nair, P., Kim, H. K., Yang, J., 2013. Biomater. Sci.1, 52–64. http://doi.org/10.1039/c2bm00026a.10.1039/C2BM00026ASuche in Google Scholar PubMed PubMed Central
11. Baler, K., Ball, J., Cankova, Z., Hoshi, R., Ameer, G. A., 2014. J. Biomater. Sci.2, 1355–1366. http://doi.org/10.1039/c4bm00133h.10.1039/C4BM00133HSuche in Google Scholar
12. Tran, R. T., Wang, L., Zhang, C., Huang, M., Tang, W., Zhang, C., 2014. J. Biomed. Mater. Res.102A, 2521–2532. http://doi.org/10.1002/jbm.a.34928.10.1002/jbm.a.34928Suche in Google Scholar PubMed PubMed Central
13. Du, Y., Yu, M., Ge, J., Ma, P. X., Chen, X., Lei, B., 2015. Adv. Func. Mater.25, 5016–5029. http://doi.org/10.1002/adfm.201501712.10.1002/adfm.201501712Suche in Google Scholar
14. Du, Y., Yu, M., Chen, X., Ma, P. X., Lei, B., 2016. ACS Appl. Mater. Inter.8, 3079–3091. http://doi.org/10.1021/acsami.5b10378.10.1021/acsami.5b10378Suche in Google Scholar PubMed
15. Sun, D., Chen, Y., Tran, R. T., Xu, S., Xie, D., Jia, C., 2014. Scientific. Reports4, 6912. http://doi.org/10.1038/srep06912.10.1038/srep06912Suche in Google Scholar PubMed PubMed Central
16. Kang, Y., Yang, J., Khan, S., Anissian, L., Ameer, G. A., 2006. J. Biomed. Mater. Res.77A, 331–339. http://doi.org/10.1002/jbm.a.30607.10.1002/jbm.a.30607Suche in Google Scholar PubMed
17. Akbarzadeh, R., Yousefi, A. M., 2014. J. Biomed. Mater. Res.102B, 1304–1315. http://doi.org/10.1002/jbm.b.33101.10.1002/jbm.b.33101Suche in Google Scholar PubMed
18. Oh, S. H., Park, S. C., Kim, H. K., Koh, Y. J., Lee, J. H., Lee, M. C., 2011. J. Biomater. Sci. Polym. Ed.22, 225–237. http://doi.org/10.1163/092050609X12597621891620.10.1163/092050609X12597621891620Suche in Google Scholar PubMed
19. Jiang, T., Carbone, E. J., Lo, W. H., Laurencin, C. T., 2015. Prog. Polym. Sci.46, 1–24. http://doi.org/10.1016/j.progpolymsci.2014.12.001.10.1016/j.progpolymsci.2014.12.001Suche in Google Scholar
20. Gutiérrez, M. C., García-Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M. L., del Monte, F., 2007. Adv. Funct. Mater.17, 3505–3513. http://doi.org/10.1002/adfm.200700093.10.1002/adfm.200700093Suche in Google Scholar
21. Wang, X., Liang, K., Tian, Y., Ji, Y., 2016. Carbohyd. Polym.157, 620–628. http://doi.org/10.1016/j.carbpol.2016.10.034.10.1016/j.carbpol.2016.10.034Suche in Google Scholar PubMed
22. Zeng, J., He, Y., Li, S., Wang, Y., 2012. Biomacromolecules13, 1–11. http://doi.org/10.1021/bm201564a.10.1021/bm201564aSuche in Google Scholar PubMed
23. Ma, L., Liu, M., Peng, Q., Liu, Y., Luo, B., Zhou, C., 2016. J. Polym. Res.23, 1–11. http://doi.org/10.1007/s10965-016-1025-2.10.1007/s10965-015-0892-2Suche in Google Scholar
24. Zhu, L., Liang, K., Ji, Y., 2015. J. Mech. Behav. Biomed.44, 35–42. http://doi.org/10.1016/j.jmbbm.2014.12.019.10.1016/j.jmbbm.2014.12.019Suche in Google Scholar PubMed
25. Hariraksapitak, P., Supaphol Pitt, P., 2010. J. Appl. Polym. Sci.117, 3406–3418. http://doi.org/10.1002/app.32095.10.1002/app.32095Suche in Google Scholar
26. Tian, Y., Liang, K., Wang, X., Ji, Y., 2017. ACS Sustain. Chem. Eng.5, 3305–3313. http://doi.org/10.1021/acssuschemeng.6b03146.10.1021/acssuschemeng.6b03146Suche in Google Scholar
27. Aksay, I. A., Weiner, S., 1998. Curr. Opin. Solid. St. M.3, 219–220. http://doi.org/10.1016/S1359-0286(98)80093-4.10.1016/S1359-0286(98)80093-4Suche in Google Scholar
28. Day, R. M., Boccaccini, A. R., Shurey, S., Roether, J. A., Forbes, A., Hench, L. L., 2004. Biomaterials25, 5857–5866. http://doi.org/10.1016/j.biomaterials.2004.01.043.10.1016/j.biomaterials.2004.01.043Suche in Google Scholar PubMed
29. Schepers, E., de Clercq, M., Ducheyne, P., Kempeneers, R., 1991. J. Oral Rehabil.18, 439–452. http://doi.org/10.1111/j.1365-2842.1991.tb01689.x.10.1111/j.1365-2842.1991.tb01689.xSuche in Google Scholar PubMed
30. Gatti, A. M., Valdrè, G., Andersson, O. H., 1994. Biomaterials15, 208–212. http://doi.org/10.1016/0142-9612(94)90069-8.10.1016/0142-9612(94)90069-8Suche in Google Scholar PubMed
31. Roether, J. A., Gough, J. E., Boccaccini, A. R., Hench, L. L., Maquet, V., Jérôme, R., 2002. J. Mater. Sci.-Mater. M.13, 1207–1214. http://doi.org/10.1023/A:1021166726914.10.1023/A:1021166726914Suche in Google Scholar PubMed
32. Maji, K., Dasgupta, S., Pramanik, K., Bissoyi, A., 2016. Int. J. Biomater.2016, 1–14. http://doi.org/10.1155/2016/9825659.10.1155/2016/9825659Suche in Google Scholar PubMed PubMed Central
33. Verrier, S., Blaker, J. J., Maquet, V., Hench, L. L., Boccaccini, A. R., 2004. Biomaterials25, 3013–3021. http://doi.org/10.1016/j.biomaterials.2003.09.081.10.1016/j.biomaterials.2003.09.081Suche in Google Scholar PubMed
34. Ji, Y., Wolfe, P. S., Rodriguez, I. A., Bowlin, G. L., 2012. Carbohyd. Polym.87, 2313–2319. http://doi.org/10.1016/j.carbpol.2011.10.066.10.1016/j.carbpol.2011.10.066Suche in Google Scholar
35. Perrin, E., Bizot, H., Cathala, B., Capron, I., 2014. Biomacromolecules15, 3766–3771. http://doi.org/10.1021/bm5010417.10.1021/bm5010417Suche in Google Scholar PubMed
36. Ji, L., Wang, W., Jin, D., Zhou, S., Song, X., 2015. Mat. Sci. Eng. C-Mater.46, 1–9. http://doi.org/10.1016/j.msec.2014.09.041.10.1016/j.msec.2014.09.041Suche in Google Scholar PubMed
37. Gutiérrez, M. C., García-Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M. L., del Monte, F., 2007. Adv. Funct. Mater.17, 3505–3513. http://doi.org/10.1002/adfm.200700093.10.1002/adfm.200700093Suche in Google Scholar
38. Lee, J., Deng, Y., 2011. Soft Matter7, 6034–6040. http://doi.org/10.1039/c1sm05388d.10.1039/c1sm05388dSuche in Google Scholar
39. Yu, X., Xia, Z., Wang, L., Peng, F., Jiang, X., Huang, J., 2012. J. Mater. Chem.22, 9721–9730. http://doi.org/10.1039/c2jm30332a.10.1039/c2jm30332aSuche in Google Scholar
40. Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., Chan, K. J. W., Förster, S., Cranston, E. D., Hoare, T., et al., 2016. Chem. Mater.28, 3406–3415. http://doi.org/10.1021/acs.chemmater.6b00792.10.1021/acs.chemmater.6b00792Suche in Google Scholar
41. Tang, D., Tare, R. S., Yang, L., Williams, D. F., Ou, K., Oreffo, R. O. C., 2016. Biomaterials83, 363–382. http://doi.org/10.1016/j.biomaterials.2016.01.024.10.1016/j.biomaterials.2016.01.024Suche in Google Scholar PubMed
42. Burger, E. H., Klein-Nulend, J., Veldhuijzen, J. P., 1992. J. Bone Miner. Res.7, S397–S401. http://doi.org/10.1002/jbmr.5650071406.10.1002/jbmr.5650071406Suche in Google Scholar PubMed
43. Eglin, D., Mortisen, D., Alini, M., 2009. Soft Matter5, 938–947. http://doi.org/10.1039/b803718n.10.1039/b803718nSuche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effects of ethanol content on the properties of silicone rubber foam
- Swelling behavior and mechanical properties of Chitosan-Poly(N-vinyl-pyrrolidone) hydrogels
- Microcellular foaming behavior of ether- and ester-based TPUs blown with supercritical CO2
- Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity
- Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
- Preparation and assembly
- Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting
- Engineering and processing
- Continuous reactors of frontal polymerization in flow for the synthesis of polyacrylamide hydrogels with prescribed properties
- Effect of slot end faces on the three-dimensional airflow field from the melt-blowing die
- Experimental and numerical study of the crushing behavior of pultruded composite tube structure