Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
Abstract
New formulations of cellulose acetate (CA) membrane with graphene (G)/graphene oxide (GO) are suggested and investigated in the present work. This study is intended to find a wide range of conditions for fabricating CA membranes in the presence of some additions of graphene (G), and graphene oxide (GO). The membrane is prepared by phase inversion process. Microscopic investigations for graphene (G), graphene oxide (GO), and prepared membrane were performed by high-resolution transmission electron microscope (HRTEM) and scanning electron microscopy (SEM). The mechanical properties of prepared membranes are determined and evaluated. Permeation tests were performed using natural seawater and simulated seawater to check the prepared membrane performance. The results presented that the permeate flux of M25% CA membranes containing 0.01 wt.% G is the highest flux (57–74 l/m2 h) compared with the neat CA membrane, and the 0.01 wt.% GO-based membranes, while the GO-based membranes were comparable as the neat CA membrane at operating pressures (30–35 bar) and with a feed of 35 g/l NaCl solution. The results showed a remarkable salt rejection of simulated seawater of 95%, and natural seawater with a feed from the Mediterranean Sea displayed 90% salt rejection and accepted pure water flux as well.
References
[1] Kamanul FJ, Zambas J, Masamb R. Phys. Chem. Earth, Parts A/B/C 2014, 72–75, 61–67.10.1016/j.pce.2014.09.001Search in Google Scholar
[2] Liu C. Comprehensive Water Quality and Purification 2013, 2, 75–97.10.1016/B978-0-12-382182-9.00030-XSearch in Google Scholar
[3] Basile A, Cassano A, Rastogi NK, Advances in Membrane Technologies for Water Treatment, Elsevier/Wodhead: Oxford, UK, 2015, Vol. 3, pp 465–517, ISBN 978-1-78242-121-4.Search in Google Scholar
[4] Petrinić I, Bajraktari N, Hélix-Nielsen C. In: Advances in Membrane Technologies for Water Treatment, Basile A, Cassano A, Rastogi NK, Eds., A Volume in Woodhead Publishing Series in Energy, 2015, pp 537–550.10.1016/B978-1-78242-121-4.00017-4Search in Google Scholar
[5] Rastogi NK, Cassano A, Basile A. In: Advances in Membrane Technologies for Water Treatment, Basile A, Cassano A, Rastogi NK, Eds., A Volume in Woodhead Publishing Series in Energy, 2015, pp 129–154.10.1016/B978-1-78242-121-4.00004-6Search in Google Scholar
[6] Sabir A, Islam A, Shafiq M, Shafeeq A, Butt MT, Ahmad NM, Sanaullah K, Jamil T. Desalination 2015, 367, 159–170.10.1016/j.desal.2014.12.041Search in Google Scholar
[7] Daer S, Kharraz J, Giwa A, Wajih Hasan S. Desalination 2015, 367, 37–48.10.1016/j.desal.2015.03.030Search in Google Scholar
[8] Bhadr M, Mitr S. Nanotechnol. App. Clean Water, Second ed., 2014, pp 109–122.10.1016/B978-1-4557-3116-9.00007-XSearch in Google Scholar
[9] Han B, Zhang D, Shao Z. Desalination 2013, 311, 80–89.10.1016/j.desal.2012.11.002Search in Google Scholar
[10] Misdan N, Lau W, Ismail A. Desalination 2012, 287, 228–237.10.1016/j.desal.2011.11.001Search in Google Scholar
[11] Waheed S, Ahmad A, Khan SM, Gul S, Jamil T, Islam A, Hussain T. Desalination 2014, 351, 59–69.10.1016/j.desal.2014.07.019Search in Google Scholar
[12] Mahdavi H, Shahalizade T. J. Membr. Sci. 2015, 473, 256–266.10.1016/j.memsci.2014.09.013Search in Google Scholar
[13] He Z, Meng M, Yan L, Zhu W, Sun F, Yan Y, Liu Y, Liu S. Sep. Purif. Technol. 2015, 145, 63–74.10.1016/j.seppur.2015.03.005Search in Google Scholar
[14] Fischer S, Thuemmler K, Volkert B, Hettrich K, Schmidt I, Fischer K. Macromol. Symp. 2008, 262, 89–96.10.1002/masy.200850210Search in Google Scholar
[15] Lucena M, Alencar A, Mazzeto S, Soares S. Polym. Degrad. Stabil. 2003, 80, 149–155.10.1016/S0141-3910(02)00396-8Search in Google Scholar
[16] Shenvi S, Ismail AF, Isloor AM. Ind. Eng. Chem. Res. 2014, 53, 13820–13827.10.1021/ie502310eSearch in Google Scholar
[17] Wang LN, Xin AB, Liu CZB, Liu WT, Xia XLA, He SQA, Liu H, Zhu CS. Arab. J. Sci. Eng. 2015, 40, 2889–2895.10.1007/s13369-015-1828-1Search in Google Scholar
[18] Arthanareeswaran G, Devi TK, Raajenthiren M. Sep. Purif. Technol. 2008, 64, 38–47.10.1016/j.seppur.2008.08.010Search in Google Scholar
[19] Hamada T, Miyazaki Y. Desalination 2004, 169, 257–267.10.1016/S0011-9164(04)00532-6Search in Google Scholar
[20] El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M. Desalination 2014, 344, 79–85.10.1016/j.desal.2014.03.005Search in Google Scholar
[21] Mahmoud KA, Mansoor B, Mansour A, Khraisheh M. Desalination 2015, 356, 208–225.10.1016/j.desal.2014.10.022Search in Google Scholar
[22] Mukherjee R, Bhunia P, De S. Chem. Eng. J. 2016, 292, 284–297.10.1016/j.cej.2016.02.015Search in Google Scholar
[23] Gopiraman M, Fujimori K, Zeeshan K, Kim BS, Kim IS. Poly. Lett. 2013, 7, 554–563.10.3144/expresspolymlett.2013.52Search in Google Scholar
[24] Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N. Desalination 2016, 391, 69–88.10.1016/j.desal.2016.02.015Search in Google Scholar
[25] Chen X, Qiu M, Ding H, Fu K, Fan Y. Nanoscale 2016, 8, 5696–5705.10.1039/C5NR08697CSearch in Google Scholar
[26] Xu Q, Xu H, Chen J, Lv Y, Dong C, Sreeprasad T. Chem. Front. 2015, 2, 417–424.10.1039/C4QI00230JSearch in Google Scholar
[27] Leenaerts O, Partoens B, Peeters FM. Appl. Phys. Lett. 2008, 93, 193107.10.1063/1.3021413Search in Google Scholar
[28] Ruan M, Hu Y, Guo Z, Dong R, Palmer J, Hankinson J, Berger C, de Heer WA. MRS Bull. 2012, 37, 1138–1147.10.1557/mrs.2012.231Search in Google Scholar
[29] Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B. NanoImpact 2016, 3–4, 22–39.10.1016/j.impact.2016.09.004Search in Google Scholar
[30] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Adv. Mater. 2010, 22, 3906–3924.10.1002/adma.201001068Search in Google Scholar PubMed
[31] Yeh C, Raidongia K, Shao J, Yang Q, Huang J. Nat. Chem. 2015, 7, 166–170.10.1038/nchem.2145Search in Google Scholar PubMed
[32] Xu Z. Nat. Commun. 2011, 2, 571.10.1038/ncomms1583Search in Google Scholar PubMed PubMed Central
[33] Zaib Q, Fath H. Desalin. Water Treat. 2012, 51, 627–636.10.1080/19443994.2012.722772Search in Google Scholar
[34] Hu M, Mi B. Environ. Sci. Technol. 2013, 47, 3715–3723.10.1021/es400571gSearch in Google Scholar PubMed
[35] Moraes A, Andrade P, Faria A, Simões M, Salomão F, Barros E, Gonçalves M, Alves O. Carbohydr. Polym. 2015, 123, 217–227.10.1016/j.carbpol.2015.01.034Search in Google Scholar PubMed
[36] Uddin M, Layek R, Kim H, Kim N, Hui D, Lee J. Composites Part B 2016, 90, 223–231.10.1016/j.compositesb.2015.12.008Search in Google Scholar
[37] El-Gendi A, Samhan FA, Ismail N, Nezam El-Dein LA. J. Ind. Eng. Chem. 2018, 65, 127–13.10.1016/j.jiec.2018.04.021Search in Google Scholar
[38] Hummers WS, Offeman RE. J. Am. Chem. Soc. 1958, 80, 1339–1339.10.1021/ja01539a017Search in Google Scholar
[39] Ismail N, Madian M, Samy El-Shall M. J. Ind. Eng. Chem. 2015, 30, 328–335.10.1016/j.jiec.2015.06.002Search in Google Scholar
[40] Nezam El-Din LA, El-Gendi A, Ismail N, Abed KA, Awad Ahmed I. J. Ind. Eng. Chem. 2015, 26, 259–264.10.1016/j.jiec.2014.11.037Search in Google Scholar
[41] Abdel-Halim AM, Aly-Eldeen MA. Egyptian J. Aquatic Res. 2016, 42, 133–140.10.1016/j.ejar.2016.05.002Search in Google Scholar
[42] Abdallah H, El-Gendi A, Shalaby MS, Amin A, El-Bayoumi M, Shaban AM. Desalination Water Treat. 2018, 116, 29–38.10.5004/dwt.2018.22306Search in Google Scholar
[43] Lee C, Wei X, Kysar JW, Hone J. Science 2008, 321, 385–388.10.1126/science.1157996Search in Google Scholar PubMed
[44] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science 2004, 306, 666–669.10.1126/science.1102896Search in Google Scholar PubMed
[45] Cohen-Tanugi D, Grossman JC. Nano Lett. 2012, 12, 3602–3608.10.1021/nl3012853Search in Google Scholar PubMed
[46] Vetrivel S, Sri Abirami Saraswathi M, Rana D, Nagendran A. Int. J. Biol. Macromol. 2018, 107, 1607–1612.10.1016/j.ijbiomac.2017.10.027Search in Google Scholar PubMed
[47] Vetrivel S, Sri Abirami Saraswathi M, Rana D, Divya K, Nagendran A. Int. J. Biol. Macromol. 2018, 115, 540–546.10.1016/j.ijbiomac.2018.04.091Search in Google Scholar PubMed
[48] Sri Abirami Saraswathi M, Rana D, Alwarappan S, Gowrishankar S, Kanimozhi P, Nagendran A. New J. Chem. 2019, http://dx.doi.org/10.1039/C8NJ04511A.10.1039/C8NJ04511ASearch in Google Scholar
[49] Abdel-Karim A, Leaper S, Alberto M, Vijayaraghavan A, Gorgojo P. Chem. Eng. J. 2018, 334, 789–799.10.1016/j.cej.2017.10.069Search in Google Scholar
[50] Alberto M, Miguel Luque-Alled J, Iliut LGM, Prestat E, Newman L, Haigh SJ, Vijayaraghavan A, Budd PM, Gorgojo P. J. Membr. Sci. 2017, 526, 437–449.10.1016/j.memsci.2016.12.061Search in Google Scholar
[51] Yamamoto K, Koge S, Gunji T, Kanezashi M, Tsuru T, Ohshita J. Desalination 2017, 404, 322–327.10.1016/j.desal.2016.11.017Search in Google Scholar
[52] Mi B. Science 2014, 343, 740–742.10.1126/science.1250247Search in Google Scholar PubMed
[53] Boukhvalov DW, Katsnelson MI, Son YW. Nano Lett. 2013, 13, 3930–3935.10.1021/nl4020292Search in Google Scholar PubMed
[54] Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR. Science 2014, 343, 752–754.10.1126/science.1245711Search in Google Scholar PubMed
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution
- Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
- Surface damage characterization of photodegraded low-density polyethylene by means of friction measurements
- Morphology and electrical properties of polypropylene/polyamide 6/glass fiber composites with low carbon black loading
- Preparation and assembly
- Preparation and evaluation of a stable and sustained release of lansoprazole-loaded poly(d,l-lactide-co-glycolide) polymeric nanoparticles
- Engineering and processing
- Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
- Manufacture and mechanical properties of sandwich structure-battery composites
- Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
- A mathematical analysis for the blade coating process of Oldroyd 4-constant fluid
Articles in the same Issue
- Frontmatter
- Material properties
- Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution
- Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination
- Surface damage characterization of photodegraded low-density polyethylene by means of friction measurements
- Morphology and electrical properties of polypropylene/polyamide 6/glass fiber composites with low carbon black loading
- Preparation and assembly
- Preparation and evaluation of a stable and sustained release of lansoprazole-loaded poly(d,l-lactide-co-glycolide) polymeric nanoparticles
- Engineering and processing
- Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
- Manufacture and mechanical properties of sandwich structure-battery composites
- Simulation of dynamic mold compression and resin flow for force-controlled compression resin transfer molding
- A mathematical analysis for the blade coating process of Oldroyd 4-constant fluid