Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)
-
Homa Maleki
Abstract
The stereocomplex formation is a promising method to improve the properties of poly(lactide) (PLA)-based products due to the strong interaction of the side-by-side arrangement of the molecular chains. Recently, electrospinning method has been applied to prepare PLA stereocomplex, which is more convenient. The objective of the current study is to make stereocomplexed PLA nanofibers using electrospinning method and compare their properties and structures with pure poly(l-lactide) (PLLA) fibers. The stereocomplexed fibers were electrospun from a blend solution of high molecular weight PLLA and poly(d-lactide) (1:1 ratio). The morphology of the obtained electrospun fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Differential scanning calorimetry was applied to study their thermal properties and crystallinity. Fourier transform infrared spectroscopy (FTIR) test was conducted on the samples to characterize their chemical properties. The SEM and AFM images indicated that smooth uniform fibers with a cylindrical structure were produced. Besides, the FTIR results and thermal properties confirmed that only stereocomplex crystallites formed in the resulting fibers via the electrospinning method.
References
[1] Barani H. Mater. Sci. Eng. C 2014, 43, 50–57.10.1016/j.msec.2014.07.004Search in Google Scholar PubMed
[2] Maleki H, Barani H. Polym. Eng. Sci. 2018, 58, 1091–1096.10.1002/pen.24671Search in Google Scholar
[3] Xue J, Xie J, Liu W, Xia Y. Accounts Chem. Res. 2017, 50, 1976–1987.10.1021/acs.accounts.7b00218Search in Google Scholar PubMed PubMed Central
[4] Jin G, Prabhakaran MP, Nadappuram BP, Singh G, Kai D, Ramakrishna S. J. Biomat. Sci. Polym. E. 2012, 23, 2337–2352.10.1163/156856211X617399Search in Google Scholar PubMed
[5] Semnani Rahbar R, Maleki H, Kalantari B. J. Exp. Nanosci. 2016, 11, 1402–1415.10.1080/17458080.2016.1233582Search in Google Scholar
[6] Liu L, Ren Y, Li Y, Liang Y. Polymer 2013, 54, 5250–5256.10.1016/j.polymer.2013.07.046Search in Google Scholar
[7] Bhagat V, Becker ML. Biomacromolecules 2017, 18, 3009–3039.10.1021/acs.biomac.7b00969Search in Google Scholar PubMed
[8] Maleki H, Gharehaghaji AA, Toliyat T, Dijkstra PJ. Biofabrication 2016, 8, 35019.10.1088/1758-5090/8/3/035019Search in Google Scholar PubMed
[9] Maleki H, Gharehaghaji AA, Dijkstra PJ. J. Mech. Behav. Biomed. Mater. 2017, 71, 231–237.10.1016/j.jmbbm.2017.03.031Search in Google Scholar PubMed
[10] Maleki H, Gharehaghaji AA, Moroni L, Dijkstra PJ. Biofabrication 2013, 5, 35014.10.1088/1758-5082/5/3/035014Search in Google Scholar PubMed
[11] Maleki H, Gharehaghaji AA, Criscenti G, Moroni L, Dijkstra PJ. J. Appl. Polym. Sci. 2015, 132, 41388.Search in Google Scholar
[12] Chen S, Luo Z, Wu L, Xiao X. Int. J. Polym. Mater. Po. 2018, 67, 572–580.10.1080/00914037.2017.1354205Search in Google Scholar
[13] Saini P, Arora M, Kumar MNVR. Adv. Drug Deliver. Rev. 2016, 107, 47–59.10.1016/j.addr.2016.06.014Search in Google Scholar PubMed
[14] Xie Q, Han L, Shan G, Bao Y, Pan P. ACS Sustain. Chem. Eng. 2016, 4, 2680–2688.10.1021/acssuschemeng.6b00191Search in Google Scholar
[15] Zhang ZC, Sang ZH, Huang YF, Ru JF, Zhong GJ, Ji X, Wang R, Li ZM. ACS Sustain. Chem. Eng. 2017, 5, 1692–1703.10.1021/acssuschemeng.6b02438Search in Google Scholar
[16] Wang B, Zheng H, Chang MW, Ahmad Z, Li JS. Colloid. Surface. B 2016, 145, 757–767.10.1016/j.colsurfb.2016.05.092Search in Google Scholar PubMed
[17] Ishii D, Ying T, Yamaoka T, Iwata T. Materials 2009, 2, 1520–1546.10.3390/ma2041520Search in Google Scholar
[18] Xie L, Xu H, Li ZM, Hakkarainen M. Macromol. Rapid Commun. 2016, 37, 745–751.10.1002/marc.201500736Search in Google Scholar PubMed
[19] Tashiro K, Wang H, Kouno N, Koshobu J, Watanabe K. Macromolecules 2017, 50, 8066–8071.10.1021/acs.macromol.7b01573Search in Google Scholar
[20] Bao J, Chang R, Shan G, Bao Y, Pan P. Cryst. Growth Des. 2016, 16, 1502–1511.10.1021/acs.cgd.5b01627Search in Google Scholar
[21] Cao ZQ, Sun XR, Bao RY, Yang W, Xie BH, Yang MB. Eur. Polym. J.2016, 83, 42–52.10.1016/j.eurpolymj.2016.08.005Search in Google Scholar
[22] Huang W, Luo XZ, Wang BJ, Wei WF, Chen P, Gu Q, de Vos S, Wang RY, Joziasse CAP. Macromol. Chem. Phys. 2015, 216, 1120–1124.10.1002/macp.201500050Search in Google Scholar
[23] Bai H, Deng S, Bai D, Zhang Q, Fu Q. Macromol. Rapid Commun. 2017, 38, 1700454.10.1002/marc.201700454Search in Google Scholar PubMed
[24] Baimark Y, Srihanam P. Polym. Test. 2015, 45, 52–57.10.1016/j.polymertesting.2015.04.017Search in Google Scholar
[25] Bao J, Han L, Shan G, Bao Y, Pan P. J. Phys. Chem. B. 2015, 119, 12689–12698.10.1021/acs.jpcb.5b05398Search in Google Scholar PubMed
[26] Zhang P, Tian R, Na B, Lv R, Liu Q. Polymer (United Kingdom) 2015, 60, 221–227.10.1016/j.polymer.2015.01.049Search in Google Scholar
[27] Zhang D, Lin Y, Wu G. Compos. Sci. Technol. 2017, 138, 57–67.10.1016/j.compscitech.2016.11.016Search in Google Scholar
[28] Tsuji H. Adv. Drug Deliver. Rev. 2016, 107, 97–135.10.1016/j.addr.2016.04.017Search in Google Scholar PubMed
[29] Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S. Macromolecules 2014, 47, 4718–4727.10.1021/ma500528aSearch in Google Scholar
[30] Yamamoto M, Nishikawa G, Afifi AM. Am. J. Macromol. Sci. 2015, 2, 11–24.Search in Google Scholar
[31] Brzeziński M, Biela T. Polym. Int. 2015, 64, 1667–1675.10.1002/pi.4961Search in Google Scholar
[32] Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A. Biomacromolecules 2006, 7, 3316–3320.10.1021/bm060786eSearch in Google Scholar PubMed
[33] Gupta A, Prasad A, Mulchandani N, Shah M, Sankar MR, Kumar S, Katiyar V. ACS Omega 2017, 2, 4039–4052.10.1021/acsomega.7b00915Search in Google Scholar PubMed PubMed Central
[34] Cui L, Wang Y, Guo Y, Liu Y, Zhao J, Zhang C, Zhu P. Polym. Advan. Technol. 2016, 27, 1301–1307.10.1002/pat.3795Search in Google Scholar
[35] Maleki H, Semnani Rahbar R, Saadatmand MM, Barani H. Plast. Rubber Compos. 2018, 47, 438–446.10.1080/14658011.2018.1532672Search in Google Scholar
[36] Casasola R, Thomas NL, Trybala A, Georgiadou S. Polymer (United Kingdom) 2014, 55, 4728–4737.10.1016/j.polymer.2014.06.032Search in Google Scholar
[37] Richard-Lacroix M, Pellerin C. Macromolecules 2013, 46, 9473–9493.10.1021/ma401681mSearch in Google Scholar
[38] Pirani S, Abushammala H, Hashaikeh R. J. Appl. Polym. Sci. 2013, 130, 3345–3354.10.1002/app.39576Search in Google Scholar
[39] Wang L, Lee RE, Wang G, Chu RKM, Zhao J, Park CB. Chem. Eng. J. 2017, 327, 1151–1162.10.1016/j.cej.2017.07.024Search in Google Scholar
[40] Fundador NGV, Takemura A, Iwata T. Macromol. Mater. Eng. 2010, 295, 865–871.10.1002/mame.201000197Search in Google Scholar
[41] Ishii D, Lee WK, Kasuya KI, Iwata T. J. Biotechnol. 2007, 132, 318–324.10.1016/j.jbiotec.2007.03.019Search in Google Scholar PubMed
[42] Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, Yazawa K, Inoue Y. Macromolecules 2012, 45, 189–197.10.1021/ma201906aSearch in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Synthesis, characterization and low energy photon attenuation studies of bone tissue substitutes
- The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers
- Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics
- Study on the thermal and structural properties of gamma-irradiated polyethylene terephthalate fibers
- Preparation and assembly
- Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)
- Dual-wavelength fluorescent anti-counterfeiting fibers with skin-core structure
- Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications
- Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater
- Engineering and processing
- Effects of high-efficiency infrared heating on fiber compatibility and weldline tensile properties of injection-molded long-glass-fiber-reinforced polyamide-66 composites
- Toward the development of polyethylene photocatalytic degradation
Articles in the same Issue
- Frontmatter
- Material properties
- Synthesis, characterization and low energy photon attenuation studies of bone tissue substitutes
- The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers
- Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics
- Study on the thermal and structural properties of gamma-irradiated polyethylene terephthalate fibers
- Preparation and assembly
- Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)
- Dual-wavelength fluorescent anti-counterfeiting fibers with skin-core structure
- Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications
- Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater
- Engineering and processing
- Effects of high-efficiency infrared heating on fiber compatibility and weldline tensile properties of injection-molded long-glass-fiber-reinforced polyamide-66 composites
- Toward the development of polyethylene photocatalytic degradation