Startseite Toughening effect and mechanism of polyamide 12 and modified montmorillonite in polybenzoxazine resin
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Toughening effect and mechanism of polyamide 12 and modified montmorillonite in polybenzoxazine resin

  • Junping Zhou , Ruifang Wang EMAIL logo , Xiaojia He , Chunxia Zhao EMAIL logo , Haolan Gou und Ling Zhao
Veröffentlicht/Copyright: 27. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mechanical properties of polybenzoxazine (PBa) resins were improved by adding polyamide 12 (PA12) and modified montmorillonite (OMMT) as additives. The mechanical properties and thermal stability of PBa and resulting PBa composites were investigated using an Instron universal material testing instrument and dynamic mechanical analysis. The morphologies of the fracture surfaces were characterized by scanning electron microscopy. The results of morphological studies showed that PBa/PA12/OMMT composites exhibit significantly improved mechanical properties and thermal stability compared with that of the pristine PBa. When the OMMT content increased to 1 wt%, the fracture toughness (1.36 MPa·m1/2) and the fracture energy (GIC, 315.76 J·m−2) of PBa/PA12/OMMT-1 composites increased by 67.9% and 181.4%, respectively, compared with those of the pristine PBa. The thermal stability properties demonstrated that the storage modulus and glass transition temperature (Tg) of PBa/PA12/OMMT composites gradually increased with the addition of OMMT particles. The scanning electron microscopy results indicated that PBa/PA12/OMMT composites possess a toughening mechanism of crack deflection, with a large bulk of voids and debonding induced by PA12 and OMMT clay particles. Moreover, the OMMT might provide microvoid nucleating sites at its surface to release constrains for shear yielding.

Award Identifier / Grant number: 51703191

Award Identifier / Grant number: X151517KCL44

Funding statement: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the National Natural Science Foundation (Funder Id: 10.13039/501100001809, 51703191) of China, the Scientific Research Innovation Team of University in Sichuan Provence (16TD0009), the International Cooperation Research Program of Sichuan Province (2017HH0082), and the Foundation for Key Lab of Oil and Gas Material of Southwest Petroleum University (X151517KCL44), P. R. China.

  1. Conflict of interest statement: The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

[1] Takeichi T, Agag T. High Perform. Polym. 2006, 18, 777–797.10.1177/0954008306068254Suche in Google Scholar

[2] Li H, Gu J, Wang D, Qu C, Zhang Y. J. Adhes. Sci. Technol. 2017, 31, 1796–1806.10.1080/01694243.2017.1283889Suche in Google Scholar

[3] Takeichi T, Kawauchi T, Agag T. Polym. J. 2008, 40, 1121–1131.10.1295/polymj.PJ2008072Suche in Google Scholar

[4] Arslan M, Kiskan B, Yagci Y. Macromolecules 2015, 48, 1329–1334.10.1021/ma5025126Suche in Google Scholar

[5] Yue J, Zhao C, Dai Y, Li H, Li Y. Thermochim. Acta 2017, 650, 18–25.10.1016/j.tca.2017.01.005Suche in Google Scholar

[6] Chen S, Zhang J, Zhou J, Zhang D, Zhang A. Chem. Eng. J. 2018, 334, 1371–1382.10.1016/j.cej.2017.11.104Suche in Google Scholar

[7] Bai Y, Yang P, Zhang S, Li Y, Gu Y. J. Therm. Anal. Calorim. 2015, 120, 1–10.10.1007/s10973-015-4506-3Suche in Google Scholar

[8] Nakamura M, Ishida H. Polymer 2009, 50, 2688–2695.10.1016/j.polymer.2009.03.053Suche in Google Scholar

[9] Chernykh A, Liu J, Ishida H. Polymer 2006, 47, 7664–7669.10.1016/j.polymer.2006.08.041Suche in Google Scholar

[10] Demir KD, Kiskan B, Aydogan B, Yagci Y. React. Funct. Polym. 2013, 73, 346–359.10.1016/j.reactfunctpolym.2012.04.016Suche in Google Scholar

[11] Xia Y, Lin Y, Ran Q, Zhu R, Gu Y. RSC Adv. 2017, 7, 1617–1625.10.1039/C6RA27493ESuche in Google Scholar

[12] Wang X, Zong L, Han J, Wang J, Liu C, Jian X. Polymer 2017, 121, 217–227.10.1016/j.polymer.2017.05.069Suche in Google Scholar

[13] Szymańska J, Bakar M, Kostrzewa M, Lavorgna M. J. Polym. Eng. 2016, 36, 43–52.10.1515/polyeng-2014-0393Suche in Google Scholar

[14] Rimdusit S, Pirstpindvong S, Tanthapanichakoon W, Damrongsakkul S. Polym. Eng. Sci. 2005, 45, 288–296.10.1002/pen.20273Suche in Google Scholar

[15] Lee YH, Allen DJ, Ishida H. J. Appl. Polym. Sci. 2010, 100, 2443–2454.10.1002/app.23430Suche in Google Scholar

[16] Zhao C, Zhou J, Zeng K, He D, Li S. Polym. Mater. Sci. Eng. 2017, 33, 63–67.Suche in Google Scholar

[17] Ishida H, Lee YH. J. Appl. Polym. Sci. 2002, 83, 1848–1855.10.1002/app.2311Suche in Google Scholar

[18] Jang J, Seo D. J. Appl. Polym. Sci. 2015, 67, 1–10.10.1002/(SICI)1097-4628(19980103)67:1<1::AID-APP1>3.0.CO;2-VSuche in Google Scholar

[19] Jang J, Yang H. Compos. Sci. Technol. 2000, 60, 457–463.10.1016/S0266-3538(99)00146-3Suche in Google Scholar

[20] Takeichi T, Guo Y, Agag T. J. Polym. Sci. A: Polym. Chem. 2000, 38, 4165–4176.10.1002/1099-0518(20001115)38:22<4165::AID-POLA170>3.0.CO;2-SSuche in Google Scholar

[21] Saz-Orozco BD, Ray D, Kervennic A, Mcgrail PT, Stanley WF. Mater. Des. 2016, 93, 297–303.10.1016/j.matdes.2015.12.138Suche in Google Scholar

[22] Sinha AK, Narang HK, Bhattacharya S. J. Polym. Eng. 2017, 9, 879–895.10.1515/polyeng-2016-0362Suche in Google Scholar

[23] Takano T, Hoang G. United States Patent 2018, 9865551.Suche in Google Scholar

[24] Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Prog. Polym. Sci. 2010, 35, 1350–1375.10.1016/j.progpolymsci.2010.07.005Suche in Google Scholar

[25] Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J. Carbon 2009, 47, 922–925.10.1016/j.carbon.2008.12.038Suche in Google Scholar

[26] Pang H, Chen C, Zhang YC, Yan DX, Li ZM. Carbon 2011, 49, 1980–1988.10.1016/j.carbon.2011.01.023Suche in Google Scholar

[27] Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH. Polymer 2010, 51, 1191–1196.10.1016/j.polymer.2010.01.027Suche in Google Scholar

[28] Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB. Carbon 2013, 60, 16–27.10.1016/j.carbon.2013.03.050Suche in Google Scholar

[29] Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davia D. Carbon 2008, 46, 320–328.10.1016/j.carbon.2007.11.051Suche in Google Scholar

[30] Zhao C, He D, Wang Y, Xing Y, Li Y. RSC Adv. 2015, 5, 85329–85337.10.1039/C5RA15341GSuche in Google Scholar

[31] Hamerton I, Mcnamara LT, Howlin BJ, Smith PA, Cross P, Ward S. Macromolecules 2014, 47, 1946–1958.10.1021/ma5002436Suche in Google Scholar

[32] Fornes TD, Paul DR. Polymer 2003, 44, 3945–3961.10.1016/S0032-3861(03)00344-6Suche in Google Scholar

[33] Jiang L, Zhang J, Wolcott MP. Polymer 2007, 48, 7632–7644.10.1016/j.polymer.2007.11.001Suche in Google Scholar

[34] Halpin JC. Mater. Res. Lab. 1992, 99–108.10.1007/978-1-4612-2946-9_8Suche in Google Scholar

[35] Zax DB, Yang DK, Santos RA, Hegemann H, Giannelis EP, Manias E. J. Chem. Phys. 2000, 112, 2945–2951.10.1063/1.480867Suche in Google Scholar

[36] Lin CH, Lin HT, Sie JW, Hwang KY, Tu AP. J. Polym. Sci. Part A: Polym. Chem. 2015, 48, 4555–4566.10.1002/pola.24247Suche in Google Scholar

[37] Sinha RS, Maiti P, Okamoto M, Yamada K, Ueda K. Macromolecules 2002, 35, 3104–3110.10.1021/ma011613eSuche in Google Scholar

[38] Tang LC, Zhang H, Sprenger S, Ye L, Zhang Z. Compos. Sci. Technol. 2012, 72, 558–565.10.1016/j.compscitech.2011.12.015Suche in Google Scholar

[39] Quaresimin M, Schulte K, Zappalorto M, Chandrasekaran S. Compos. Sci. Technol. 2016, 123, 187–204.10.1016/j.compscitech.2015.11.027Suche in Google Scholar

[40] Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR. Thermochim. Acta 2007, 454, 1–22.10.1016/j.tca.2006.11.003Suche in Google Scholar

Received: 2018-01-27
Accepted: 2018-05-08
Published Online: 2018-06-27
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0020/html
Button zum nach oben scrollen