The effects of cross-linked/uncross-linked electrospun fibrinogen/polycaprolactone nanofibers on the proliferation of normal human epidermal keratinocytes
-
Mohamad Javad Mirzaei-Parsa
, Hossein Ghanbari , Naghmeh Bahrami , Shahryar Hadadi-Abianeh and Reza Faridi-Majidi
Abstract
The aim of this study was an investigation on the proliferation rate of normal human epidermal keratinocytes (NHEK) on the cross-linked and uncross-linked fibrinogen/polycaprolactone (Fbg/PCL) nanofibers to determine a suitable scaffold for skin tissue engineering. Nanofibrous scaffolds were prepared by electrospinning of different weight ratios of Fbg to PCL and were analyzed as morphology, surface chemical properties and cytocompatibility by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. The diameters of the blended uncross-linked scaffolds were in the range of 124±43 nm–209±155 nm. Cross-linking of scaffolds with glutaraldehyde did not make a significant change in the diameter of blended scaffolds in 16 h. Cross-linking also improved the tensile strength and weight loss rate of scaffolds. However, cross-linking demonstrated an unfavorable effect on the attachment and proliferation of NHEK cells. The proliferation study revealed that uncross-linked scaffolds containing 50% and 70% Fbg provide a better environment for the growth of NHEK cells, and can be considered promising scaffolds in tissue engineering applications.
Acknowledgments
This project was supported by Tehran University of Medical Sciences (TUMS; grant no. 94-0287-28594).
References
[1] Mirzaei E, Ai J, Ebrahimi-Barough S, Verdi J, Ghanbari H, Faridi-Majidi R. Mol. Neurobiol. 2016, 53, 4798–4808.10.1007/s12035-015-9410-0Search in Google Scholar PubMed
[2] Esnaashari SS, Rezaei S, Mirzaei E, Afshari H, Rezayat SM, Faridi-Majidi R. Int. J. Biol. Macromol. 2014, 70, 50–56.10.1016/j.ijbiomac.2014.06.014Search in Google Scholar PubMed
[3] Derakhshan MA, Pourmand G, Ai J, Ghanbari H, Dinarvand R, Naji M. Int. Urol. Nephrol. 2016, 48, 1097–1104.10.1007/s11255-016-1259-2Search in Google Scholar PubMed
[4] Han D, Gouma P-I. Nanomedicine: NBM 2006, 2, 37–41.10.1016/j.nano.2006.01.002Search in Google Scholar PubMed
[5] Bonvallet PP, Culpepper BK, Bain JL, Schultz MJ, Thomas SJ, Bellis SL. Tissue Eng. Part A. 2014, 20, 2434–2445.10.1089/ten.tea.2013.0645Search in Google Scholar
[6] Sionkowska A. Prog. Polym. Sci. 2011, 36, 1254–1276.10.1016/j.progpolymsci.2011.05.003Search in Google Scholar
[7] Liu C, Wong HM, Yeung KWK, Tjong SC. Polymers 2016, 8, 287.10.3390/polym8080287Search in Google Scholar PubMed PubMed Central
[8] Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. J. Controlled Release 2014, 185, 12–21.10.1016/j.jconrel.2014.04.018Search in Google Scholar PubMed
[9] Abrigo M, McArthur SL, Kingshott P. Macromol. Biosci. 2014, 14, 772–792.10.1002/mabi.201300561Search in Google Scholar PubMed
[10] Kouhi M, Morshed M, Varshosaz J, Fathi MH. Chem. Eng. J. 2013, 228, 1057–1065.10.1016/j.cej.2013.05.091Search in Google Scholar
[11] Rajangam T, An SSA. Int. J. Nanomed. 2013, 8, 3641–3662.10.2147/IJN.S43945Search in Google Scholar PubMed PubMed Central
[12] Liu Z, Li S, Su L, Sun K, Wu X, Wu F. J. Biomater. Appl. 2015, 30, 230–238.10.1177/0885328215577732Search in Google Scholar PubMed
[13] Carlisle CR, Coulais C, Namboothiry M, Carroll DL, Hantgan RR, Guthold M. Biomaterials 2009, 30, 1205–1213.10.1016/j.biomaterials.2008.11.006Search in Google Scholar PubMed PubMed Central
[14] Balasubramanian P, Prabhakaran MP, Kai D, Ramakrishna S. J. Biomater. Sci. Polym. Ed. 2013, 24, 1660–1675.10.1080/09205063.2013.789958Search in Google Scholar PubMed
[15] Gugutkov D, Gustavsson J, Cantini M, Salmeron-Sánchez M, Altankov G. J. Tissue Eng. Regener. Med. 2016, 11, 2774–2784.10.1002/term.2172Search in Google Scholar PubMed
[16] Wu X, Wang Y, Zhu C, Tong X, Yang M, Yang L. Int. J. Nanomed. 2016, 11, 389–397.10.2147/IJN.S88803Search in Google Scholar PubMed PubMed Central
[17] Bacakova M, Musilkova J, Riedel T, Stranska D, Brynda E, Zaloudkova M. Int. J. Nanomed. 2016, 11, 771–789.10.2147/IJN.S99317Search in Google Scholar PubMed PubMed Central
[18] McManus MC, Sell SA, Bowen WC, Koo HP, Simpson DG, Bowlin GL. J. Eng. Fibers Fabr. 2008, 3, 12–21.10.1177/155892500800300204Search in Google Scholar
[19] Forget J, Awaja F, Gugutkov D, Gustavsson J, Gallego Ferrer G, Coelho-Sampaio T. Macromol. Biosci. 2016, 16, 1348–1359.10.1002/mabi.201600080Search in Google Scholar PubMed
[20] Fang Z, Fu W, Dong Z, Zhang X, Gao B, Guo D. Appl. Surf. Sci. 2011, 257, 4133–4138.10.1016/j.apsusc.2010.12.011Search in Google Scholar
[21] He C, Xu X, Zhang F, Cao L, Feng W, Wang H. J. Biomed. Mater. Res. Part A 2011, 97, 339–347.10.1002/jbm.a.33067Search in Google Scholar PubMed
[22] Sireesha M, Babu VJ, Ramakrishna S. RSC Adv. 2015, 5, 103308–103314.10.1039/C5RA20322HSearch in Google Scholar
[23] Tamimi E, Ardila D, Haskett D, Doetschman T, Slepian MJ, Kellar R. J. Biomech. Eng. 2016, 138, 011001.10.1115/1.4031847Search in Google Scholar PubMed PubMed Central
[24] Mirzaei-Parsa MJ, Ghanizadeh A, Ebadi MT, Faridi-Majidi R. Biomed. Mater. Eng. 2018, 29, 279–287.10.3233/BME-181736Search in Google Scholar
[25] Baker S, Sigley J, Helms CC, Stitzel J, Berry J, Bonin K, Guthold M. Mater. Sci. Eng. C 2012, 32, 215–221.10.1016/j.msec.2011.10.021Search in Google Scholar PubMed PubMed Central
[26] Li Z, Wang C. Effects of Working Parameters on Electrospinning. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers, Springer: Berlin Heidelberg, 2013, p 15–28.10.1007/978-3-642-36427-3_2Search in Google Scholar
[27] Tan S, Inai R, Kotaki M, Ramakrishna S. Polymer 2005, 46, 6128–6134.10.1016/j.polymer.2005.05.068Search in Google Scholar
[28] Lee J, Tae G, Kim YH, Park IS, Kim S-H, Kim SH. Biomaterials 2008, 29, 1872–1879.10.1016/j.biomaterials.2007.12.029Search in Google Scholar PubMed
[29] Zhang Y, Venugopal J, Huang Z-M, Lim C, Ramakrishna S. Polymer 2006, 47, 2911–2917.10.1016/j.polymer.2006.02.046Search in Google Scholar
[30] Qian Y-F, Zhang K-H, Chen F, Ke Q-F, Mo X-M. J. Biomater. Sci. Polym. Ed. 2011, 22, 1099–10113.10.1163/092050610X499447Search in Google Scholar PubMed
[31] Trinca RB, Westin CB, da Silva JAF, Moraes AM. Eur. Polym. J. 2017, 88, 161–170.10.1016/j.eurpolymj.2017.01.021Search in Google Scholar
[32] Jin G, Prabhakaran MP, Ramakrishna S. Acta Biomater. 2011, 7, 3113–3122.10.1016/j.actbio.2011.04.017Search in Google Scholar PubMed
[33] Pruchniak MP, Arazna M, Demkow U. Respir. Physiol. Neurobiol. 2013, 187, 68–73.10.1016/j.resp.2013.02.023Search in Google Scholar PubMed
[34] Takagi N, Kawakami K, Kanno E, Tanno H, Takeda A, Ishii K. Exp. Dermatol. 2016, 26, 137–144.10.1111/exd.13115Search in Google Scholar PubMed
[35] Wilgus TA, Roy S, McDaniel JC. Adv Wound Care 2013, 2, 379–388.10.1089/wound.2012.0383Search in Google Scholar PubMed PubMed Central
[36] Liu Y, Ma L, Gao C. Mater. Sci. Eng. C 2012, 32, 2361–2366.10.1016/j.msec.2012.07.008Search in Google Scholar
[37] Cipitria A, Skelton A, Dargaville T, Dalton P, Hutmacher D. J. Mater. Chem. 2011, 21, 9419–9453.10.1039/c0jm04502kSearch in Google Scholar
[38] Park C-H, Kim EK, Tijing LD, Amarjargal A, Pant HR, Kim CS. Ceram. Int. 2014, 40, 5049–5054.10.1016/j.ceramint.2013.10.016Search in Google Scholar
[39] Zhou W, Feng Y, Yang J, Fan J, Lv J, Zhang L. J. Mater. Sci. Mater. Med. 2015, 26, 1–14.10.1007/s10856-015-5386-6Search in Google Scholar
[40] Sell SA, Francis MP, Garg K, McClure MJ, Simpson DG, Bowlin GL. Biomed. Mater. 2008, 3, 045001.10.1088/1748-6041/3/4/045001Search in Google Scholar PubMed
[41] Leung V, Hartwell R, Elizei SS, Yang H, Ghahary A, Ko F. J. Biomed. Mater. Res. Part B 2014, 102, 508–515.10.1002/jbm.b.33028Search in Google Scholar PubMed
[42] Reddy N, Reddy R, Jiang Q. Trends Biotechnol. 2015, 33, 362–369.10.1016/j.tibtech.2015.03.008Search in Google Scholar PubMed
[43] Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, Henriques C. Mater. Sci. Eng. C 2015, 46, 348–358.10.1016/j.msec.2014.10.051Search in Google Scholar PubMed
[44] Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LYL. J. Biomed. Mater. Res. Part A 2006, 79, 456–463.10.1002/jbm.a.30870Search in Google Scholar PubMed
[45] Shalumon K, Anulekha K, Chennazhi KP, Tamura H, Nair S, Jayakumar R. Int. J. Biol. Macromol. 2011, 48, 571–576.10.1016/j.ijbiomac.2011.01.020Search in Google Scholar PubMed
[46] He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JCH. J. Biomed. Mater. Res. Part A 2013, 101, 555–566.10.1002/jbm.a.34333Search in Google Scholar PubMed
[47] Wang H, Feng Y, An B, Zhang W, Sun M, Fang Z. J. Mater. Sci. Mater. Med. 2012, 23, 1499–1510.10.1007/s10856-012-4613-7Search in Google Scholar PubMed
[48] Denis P, Dulnik J, Sajkiewicz P. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 354–364.10.1080/00914037.2014.945208Search in Google Scholar
[49] Rajangam T, An S. Int. J. Nanomed. 2013, 8, 3641–3662.10.2147/IJN.S43945Search in Google Scholar PubMed PubMed Central
[50] Krishnan R, Sundarrajan S, Ramakrishna S. Macromol. Mater. Eng. 2013, 298, 1034–1058.10.1002/mame.201370030Search in Google Scholar
[51] Jalaja K, James NR. Int. J. Biol. Macromol. 2015, 73, 270–278.10.1016/j.ijbiomac.2014.11.018Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Steady shear and dynamic strain thickening of halloysite nanotubes and fumed silica shear thickening composite
- Diffusivity of solvents in semi-crystalline polyethylene using the Vrentas-Duda free-volume theory
- Toughening effect and mechanism of polyamide 12 and modified montmorillonite in polybenzoxazine resin
- The effects of cross-linked/uncross-linked electrospun fibrinogen/polycaprolactone nanofibers on the proliferation of normal human epidermal keratinocytes
- Frequency independent AC electrical conductivity and dielectric properties of polyaniline-based conductive thermosetting composite
- Preparation and assembly
- Study on the preparation and drug release property of soybean selenoprotein/carboxymethyl chitosan composite hydrogel
- Engineering and processing
- Interaction of nanofillers in injection-molded graphene/carbon nanotube reinforced PA66 hybrid nanocomposites
- Prediction of the yellowing of styrene-stat-acrylonitrile and acrylonitrile-butadiene-styrene during processing in an internal mixer
- Milling process optimization for the best surface coat adhesion of the rigid polyurethane foam
- A numerical analysis of calendering of Oldroyd 4-constant fluid
Articles in the same Issue
- Frontmatter
- Material properties
- Steady shear and dynamic strain thickening of halloysite nanotubes and fumed silica shear thickening composite
- Diffusivity of solvents in semi-crystalline polyethylene using the Vrentas-Duda free-volume theory
- Toughening effect and mechanism of polyamide 12 and modified montmorillonite in polybenzoxazine resin
- The effects of cross-linked/uncross-linked electrospun fibrinogen/polycaprolactone nanofibers on the proliferation of normal human epidermal keratinocytes
- Frequency independent AC electrical conductivity and dielectric properties of polyaniline-based conductive thermosetting composite
- Preparation and assembly
- Study on the preparation and drug release property of soybean selenoprotein/carboxymethyl chitosan composite hydrogel
- Engineering and processing
- Interaction of nanofillers in injection-molded graphene/carbon nanotube reinforced PA66 hybrid nanocomposites
- Prediction of the yellowing of styrene-stat-acrylonitrile and acrylonitrile-butadiene-styrene during processing in an internal mixer
- Milling process optimization for the best surface coat adhesion of the rigid polyurethane foam
- A numerical analysis of calendering of Oldroyd 4-constant fluid