Home Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer
Article
Licensed
Unlicensed Requires Authentication

Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer

  • Maksym Rybachuk ORCID logo EMAIL logo , Charlène Alice Mauger , Thomas Fiedler and Andreas Öchsner
Published/Copyright: January 20, 2017
Become an author with De Gruyter Brill

Abstract

The anisotropic mechanical properties of parts that are fabricated using acrylonitrile butadiene styrene (ABS) polymer relative to part-built orientation employing the fused deposition modelling process are reported in this work. ABSplus-P430 polymer was used to investigate the effects of infill orientation on the parts’ mechanical properties under tensile and compression loading. Results revealed that infill orientation strongly affected the tensile properties of fabricated ABS samples. Specifically, the values for Young’s modulus ranged from ~1.5 to ~2.1 GPa, ultimate tensile strength from ~12.0 to ~22.0 MPa, yield strength from ~1.0 to ~21.0 MPa, and elongation-at-break from ~0.2 to ~4.8% for different infill orientations. Samples with infill orientation aligned to the vertical (i.e. Z-) axis displayed the highest values relative to all other infill orientations investigated. Mechanical properties anisotropy was lower for parts under compressive loading, such that the Young’s modulus, ultimate compressive and yield strength were weakly correlated with infill orientation apart from samples whose built orientation was aligned at 45° to the vertical Z-axis. The latter samples displayed inferior mechanical properties under all compressive tests. The effects of sample gauge thickness on tensile properties and ABS sample micro- and bulk- hardness with respect to infill orientation are also discussed.

Acknowledgments

C.M. acknowledges the overseas internship funding from Université de Strasbourg. M.R. acknowledges the Sir Samuel Griffith Lectureship program and seed funding from the Griffith School of Engineering. The technical support from Ian Underhill, Chris Little and Chuen Lo is also gratefully acknowledged.

References

[1] Rodríguez JF, Thomas JP, Renaud JE. Rapid Prototyping J. 2001, 7, 148–158.10.1108/13552540110395547Search in Google Scholar

[2] Ahn SH, Montero M, Odell D, Roundy S, Wright PK. Rapid Prototyping J. 2002, 8, 248–257.10.1108/13552540210441166Search in Google Scholar

[3] Rodríguez JF, Thomas JP, Renaud JE. Rapid Prototyping J. 2003, 9, 219–230.10.1108/13552540310489604Search in Google Scholar

[4] Lee CS, Kim SG, Kim HJ, Ahn SH. J. Mater. Process. Tech. 2007, 187–188, 627–630.10.1016/j.jmatprotec.2006.11.095Search in Google Scholar

[5] Olivera S, Muralidhara HB, Venkatesh K, Gopalakrishna K, Vivek CS. J. Mater. Sci. 2016, 1–18.Search in Google Scholar

[6] Syamsuzzaman M, Mardi NA, Fadzil M, Farazila Y. Mater. Res. Innov. 2014, 18, 485–489.10.1179/1432891714Z.0000000001030Search in Google Scholar

[7] Huang B, Singamneni S. In Advanced Research in Material Science and Mechanical Engineering, Pts 1 and 2; Rui, H, Ed., Trans Tech Publications Ltd: Stafa-Zurich, 2014, Vol. 446–447, pp. 263–269.10.4028/www.scientific.net/AMM.446-447.263Search in Google Scholar

[8] Carneiro OS, Silva AF, Gomes R. Mater. Des. 2015, 83, 768–776.10.1016/j.matdes.2015.06.053Search in Google Scholar

[9] Sood AK, Ohdar RK, Mahapatra SS. J. Adv. Res. 2012, 3, 81–90.10.1016/j.jare.2011.05.001Search in Google Scholar

[10] Walton DJ. Mater. Des. 1990, 11, 142–152.10.1016/0261-3069(90)90004-4Search in Google Scholar

[11] Daneshmand S, Aghanajafi C, Shahverdi H. J. Polym. Eng. 2012, 32, 575–584.10.1515/polyeng-2012-0089Search in Google Scholar

[12] Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV. J. Appl. Polym. Sci. 2003, 89, 3081–3090.10.1002/app.12496Search in Google Scholar

[13] Donald AM, Kramer EJ. J. Mater Sci. 1982, 17, 1765–1772.10.1007/BF00540805Search in Google Scholar

[14] Owen SR, Harper JF. Polym. Degrad. Stabil. 1999, 64, 449–455.10.1016/S0141-3910(98)00150-5Search in Google Scholar

[15] Khun NW, Liu E. J. Polym. Eng. 2013, 33, 535–543.10.1515/polyeng-2013-0039Search in Google Scholar

[16] Hage E, Hale W, Keskkula H, Paul DR. Polymer 1997, 38, 3237–3250.10.1016/S0032-3861(96)00879-8Search in Google Scholar

[17] Lee J, Huang A. Rapid Prototyping J. 2013, 19, 291–299.10.1108/13552541311323290Search in Google Scholar

[18] Stratasys Inc. P430 ABS/M30 ABS Model; Material Safety Data Sheet according to 1907/2006/EC, AR. 2013.Search in Google Scholar

[19] Stratasys Inc. P400 ABS Model; Material Safety Data Sheet according to US OSHA HCS; #109348-0001 (A); revision 03.05.2013.Search in Google Scholar

[20] Lebedev YV, Ilavsky M, Dusek K, Lipatov YS, Pelzbauer Z. J. Appl. Polym. Sci. 1980, 25, 2493–2500.10.1002/app.1980.070251104Search in Google Scholar

[21] Kim H, Keskkula H, Paul DR. Polymer 1991, 32, 1447–1455.10.1016/0032-3861(91)90425-ISearch in Google Scholar

[22] Zeleny P, Safka J, Elkina I. In Novel Trends in Production Devices and Systems, Velisek, K; Kostal, P; Nad, M, (Eds.), 2014, 474, 381–386.10.4028/www.scientific.net/AMM.474.381Search in Google Scholar

[23] Tymrak BM, Kreiger M, Pearce JM. Mater. Des. 2014, 58, 242–246.10.1016/j.matdes.2014.02.038Search in Google Scholar

[24] Sood AK, Ohdar RK, Mahapatra SS. Mater Des. 2010, 31, 287–295.10.1016/j.matdes.2009.06.016Search in Google Scholar

[25] Brinson LC, Gates TS. Int. J. Solids Struct. 1995, 32, 827–846.10.1016/0020-7683(94)00163-QSearch in Google Scholar

[26] Chen HP. AIAA J. 1991, 29, 813–819.10.2514/3.10661Search in Google Scholar

[27] Magalhes LC, Volpato N, Luersen MA. J. Braz. Soc. Mech. Sci. & Eng. 2014, 36, 449–459.10.1007/s40430-013-0111-1Search in Google Scholar

[28] Hughes G, Öchsner A. In Advanced Structured Materials, Öchsner A, Altenbach H, Eds., Springer: Heidelberg, Germany, 2015, Vol. 71, pp. 133–179.10.1007/978-3-319-19470-7_9Search in Google Scholar

[29] Öchsner A. Continuum Damage and Fracture Mechanics, Springer Singapore, 2016.10.1007/978-981-287-865-6Search in Google Scholar

[30] Sugavaneswaran M, Arumaikkannu G. Mater. Des. 2015, 66, Part A, 29–36.10.1016/j.matdes.2014.10.029Search in Google Scholar

[31] Jami H, Masood SH, Song WQ. Adv. Mater. Res. 2013, 748, 291–294.10.4028/www.scientific.net/AMR.748.291Search in Google Scholar

[32] Mohamed OA, Masood SH, Bhowmik JL, Nikzad M, Azadmanjiri J. J. Mater. Eng. Perform. 2016, 25, 2922–2935.10.1007/s11665-016-2157-6Search in Google Scholar

[33] Hu A, Griesing S, Rybachuk M, Lu Q-B, Duley WW. J. Appl. Phys. 2007, 102, 074311–074316.10.1063/1.2786708Search in Google Scholar

[34] Rybachuk M, Bell JM. Diam. Relat. Mater. 2006, 15, 977–981.10.1016/j.diamond.2005.12.001Search in Google Scholar

[35] Zhou JG, Kokkengada M, He Z, Kim YS, Tseng AA. Mater. Des. 2004, 25, 145–154.10.1016/j.matdes.2003.09.014Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/polyeng-2016-0263) offers supplementary material.


Received: 2016-7-12
Accepted: 2016-11-13
Published Online: 2017-1-20
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0263/pdf?lang=en
Scroll to top button