Home Study on low temperature toughness and crystallization behavior of polypropylene random copolymer
Article
Licensed
Unlicensed Requires Authentication

Study on low temperature toughness and crystallization behavior of polypropylene random copolymer

  • Yingchun Li , Shuai He , Hui He EMAIL logo , Peng Yu and Dongqing Wang
Published/Copyright: December 15, 2016
Become an author with De Gruyter Brill

Abstract

This research designed a series of novel approaches aiming to tackle a long-standing problem that is the brittleness of polypropylene (PP) random copolymer (PPR) at low temperature. By introducing polyolefin elastomer (POE), the toughness of PPR was improved; talc improved the stiffness of PPR, low density polyethylene (LDPE) or high density PE (HDPE) improved the low temperature toughness of PPR, and annealing treatment also improved the low temperature toughness of PPR significantly. The addition of dicumyl peroxide (DCP) and triallyl isocyanurate (TAIC) increased its stiffness through the formation of cross-linking networks. Also, the crystallization behavior and morphology were investigated in detail. Differential scanning calorimetry (DSC) results indicated that the adoption of annealing treatment can improve the crystallinity of PPR, while a polarizing microscope revealed that the incorporation of foreign matter can facilitate the crystallization process of the matrix. X-ray diffraction (XRD) tests showed an unchanged polymorphic composition of PPR after introducing different additives, and scanning electron microscopy (SEM) indicated that annealing treatment can enhance interfacial interactions between the matrix and fillers.

Acknowledgments

The authors gratefully acknowledge The Science and Technology Project of Guangzhou (201508020090) for financial support.

References

[1] Moore EP. Polypropylene Handbook: Polymerization, Characterization, Properties, Processing, Applications. Hanser-Gardner Publications: Cincinnati, 1996.Search in Google Scholar

[2] Silvestre C, Cimmino S, Triolo R. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 493–500.10.1002/polb.10403Search in Google Scholar

[3] Horvath Z, Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Tranninger C, Kheirandish S, Varga J, Pukánszky B. J. Appl. Polym. Sci. 2013, 130, 3365–3373.10.1002/app.39585Search in Google Scholar

[4] Busico V, Cipullo R. Prog. Polym. Sci. 2001, 26, 443–533.10.1016/S0079-6700(00)00046-0Search in Google Scholar

[5] Gahleitner M, Jääskeläinen P, Ratajski E, Paulik C, Reussner J, Wolfschwenger J, Neißl W. J. Appl. Polym. Sci. 2005, 95, 1073–1081.10.1002/app.21308Search in Google Scholar

[6] Busico V, Cipullo R, Friederichs N, Ronca S, Talarico G, Togrou M, Wang B. Macromolecules 2004, 37, 8201–8203.10.1021/ma048144bSearch in Google Scholar

[7] Mai JH, Zhang MQ, Rong MZ, Bárány T, Ruan WH. eXPRESS Polym. Lett. 2012, 6, 739–749.10.3144/expresspolymlett.2012.79Search in Google Scholar

[8] Zhu Y, Luo F, Bai H, Wang K, Deng H, Chen F, Zhang Q, Fu Q. J. Appl. Polym. Sci. 2013, 129, 3613–3622.10.1002/app.39107Search in Google Scholar

[9] McNally T, McShane P, Nally GM, Murphy WR, Cook M, Miller A. Polymer 2002, 43, 3785–3793.10.1016/S0032-3861(02)00170-2Search in Google Scholar

[10] Feng L, Wang K, Wang J, Deng H, Zhang Q, Chen F, Fu Q, Na B. Polym. Int. 2011, 60, 1705–1714.10.1002/pi.3135Search in Google Scholar

[11] Li M, Li G, Jiang J, Tao Y, Mai K. Compos. Sci. Technol. 2013, 81, 30–36.10.1016/j.compscitech.2013.03.020Search in Google Scholar

[12] Pasquini N, Dell V. Polypropylene Handbook. Hanser Publishers: Munich, 2005.Search in Google Scholar

[13] Rapa M, Rapa M, Grosu E, Ghioca PN, Iancu L, Spurcaciu B, Pica A, Gardu R, Cincu C. Materiale Plastice 2016, 53, 68–72.Search in Google Scholar

[14] Abreu F, Forte MMC, Liberman SA. J. Appl. Polym. Sci. 2005, 95, 254–263.10.1002/app.21263Search in Google Scholar

[15] Wang XM, Wang X, Yin X, Wang L, Zhang C, Gong W, He L. J. Appl. Polym. Sci. 2016, 133, 42960.10.1002/app.44335Search in Google Scholar

[16] Menyhárd A, Varga J, Liber Á, Belina G. Eur. Polym. J. 2005, 41, 669–677.10.1016/j.eurpolymj.2004.10.036Search in Google Scholar

[17] Luo F, Wang J, Bai H, Wang K, Deng H, Zhang Q, Chen F, Fu Q, Na B. Mater. Sci. Eng. A 2011, 528, 7052–7059.10.1016/j.msea.2011.05.030Search in Google Scholar

[18] Zhou X, Feng J, Yi J, Wang L. Mater. Des. 2013, 49, 502–510.10.1016/j.matdes.2013.01.069Search in Google Scholar

[19] Qiao T, Song P, Guo H, Song X, Zhang B, Chen X. Eur. Polym. J. 2016, 74, 101–108.10.1016/j.eurpolymj.2015.11.012Search in Google Scholar

[20] Li Y, Huang J, Lu X, Jia S, Zhang H, Jin G, Qu J. J. Appl. Polym. Sci. 2015, 132, 41543.10.1002/app.42596Search in Google Scholar

[21] Polat K, Sen M. J. Polym. Eng. 2014, 34, 787–792.10.1515/polyeng-2014-0056Search in Google Scholar

[22] Chen JW, Dai J, Yang J-H, Zhang N, Huang T, Wang Y, Zhang C-L. Chin. J. Polym. Sci. 2015, 33, 1211–1224.10.1007/s10118-015-1668-1Search in Google Scholar

[23] Wu HY, Li X, Chen J, Shao L, Huang T, Shi Y, Wang Y. Composites, Part B 2013, 44, 439–445.10.1016/j.compositesb.2012.04.020Search in Google Scholar

[24] Li JX, Cheung WL. Polymer 1998, 39, 6935–6940.10.1016/S0032-3861(98)00144-XSearch in Google Scholar

[25] Castillo L, López O, López C, Zaritzky N, García MA, Barbosa S, Villar M. Carbohydr. Polym. 2013, 95, 664–674.10.1016/j.carbpol.2013.03.026Search in Google Scholar PubMed

Received: 2016-5-16
Accepted: 2016-11-4
Published Online: 2016-12-15
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0169/html?lang=en
Scroll to top button