Abstract
The morphological distribution of carbon nanotubes (CNTs) in polymer matrix has a crucial impact on the performance of CNT-filled polymer composites. A novel microlayer extrusion technology used in the dispersion and orientation of CNTs was proposed, and polypropylene (PP)/multiwalled CNT (MWCNT) composites with different numbers of layers were prepared with it. The MWCNT dispersion was investigated by scanning electron microscopy and Raman mapping method, and the MWCNT orientation was quantified by Raman spectroscopy. The influences of the dispersion and orientation of MWCNTs on the electrical conductivity and crystallization behavior of the composites were investigated. The results showed that the anisotropic conducting properties of the multilayered composites varied distinguishably with the increase of layer numbers and rotation speed. Furthermore, the degree of crystallinity of PP increased when the layer number increased from 1 to 729. All of these results suggest that with the increase of the layer numbers and the rotation speed, the dispersion and orientation of MWCNTs in PP matrix improve greatly. Overall, we provide an efficient and practical approach to control the dispersion and orientation of CNT in polymer matrix, which has a promising application prospect in the field of plastic processing.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21174015
Award Identifier / Grant number: 51603009
Funding statement: Funding: Fundamental Research Funds for the Central Universities, (Grant/Award Number: ‘YS1403’). National Natural Science Foundation of China (grant no. 21174015, 51603009).
Acknowledgments
This research was funded by the National Natural Science Foundation of China (grant no. 21174015, 51603009) and the Fundamental Research Funds for the Central Universities (grant nos. YS1403). The authors express their gratitude to Jiangsu Golden Material Technology Co., Ltd., for their generous support and use of their laboratory machines.
Conflict of interest statement: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
[1] Iijima S. Nature 1991, 354, 56–58.10.1038/354056a0Search in Google Scholar
[2] Zhu D, Bin Y, Matsuo M. J. Polym. Sci. Pol. Phys. 2007, 49, 1037–1044.10.1002/polb.21115Search in Google Scholar
[3] Cheng C. J. Polym. Eng. 2010, 30, 95–108.10.1592/phco.30.1.95Search in Google Scholar
[4] Bonilla-Blancas Ε, Sanchez-Solis Α, Manero Ο. J. Polym. Eng. 2008, 28, 553–576.10.1515/POLYENG.2008.28.9.553Search in Google Scholar
[5] Jawahar P, Kanny K, Balasubramanian M. J. Polym. Eng. 2009, 29, 563–580.10.1515/POLYENG.2009.29.8-9.563Search in Google Scholar
[6] Kim BK, Seo JW, Jeong HM. J. Polym. Eng. 2009, 29, 27–38.10.1515/POLYENG.2009.29.1-3.27Search in Google Scholar
[7] Ajayan PM, Schadler LS, Giannaris C, Rubio A. Adv. Mater. 2000, 12, 750–753.10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6Search in Google Scholar
[8] Park C, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS. Chem. Phys. Lett. 2002, 364, 303–308.10.1016/S0009-2614(02)01326-XSearch in Google Scholar
[9] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog. Polym. Sci. 2010, 35, 357–401.10.1016/j.progpolymsci.2009.09.003Search in Google Scholar
[10] Yang X, Li L, Shang S, Tao XM. J. Appl. Polym. Sci. 2011, 122, 1986–1992.10.1002/app.34072Search in Google Scholar
[11] Yan X, Zhang X, Wen C, Ke W, Hong T, Qin Z, Du R, Qiang F. J. Appl. Polym. Sci. 2007, 104, 1880–1886.10.1002/app.25852Search in Google Scholar
[12] Pötschke P, Brünig H, Janke A, Fischer D, Jehnichen D. Polymer 2005, 46, 10355–10363.10.1016/j.polymer.2005.07.106Search in Google Scholar
[13] Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI. Chem. Phys. Lett. 2000, 330, 219–225.10.1016/S0009-2614(00)01013-7Search in Google Scholar
[14] Fischer D, Pötschke P, Brünig H, Janke A. Macromol. Symp. 2005, 230, 167–172.10.1002/masy.200551156Search in Google Scholar
[15] Li SN, Li B, Li ZM, Fu Q, Shen KZ. Polymer 2006, 47, 4497–4500.10.1016/j.polymer.2006.04.051Search in Google Scholar
[16] Lin Y, Hiltner A, Baer E. Polymer 2010, 51, 4218–4224.10.1016/j.polymer.2010.06.059Search in Google Scholar
[17] Xu S, Wen M, Li J, Guo S, Wang M, Du Q, Shen J, Zhang Y, Jiang S. Polymer 2008, 49, 4861–4870.10.1016/j.polymer.2008.08.056Search in Google Scholar
[18] Lin Y, Hiltner A, Baer E. Polymer 2010, 51, 5807–5814.10.1016/j.polymer.2010.09.070Search in Google Scholar
[19] Gupta M, Lin YJ, Deans T, Baer E, Hiltner A, Schiraldi DA. Macromolecules 2010, 43, 4230–4239.10.1021/ma100391uSearch in Google Scholar
[20] Wang H, Keum JK, Hiltner A, Baer E, Freeman B, Rozanski A. Science 2009, 323, 757–760.10.1126/science.1164601Search in Google Scholar PubMed
[21] Langhe DS, Hiltner A, Baer E. Polymer 2011, 52, 5879–5889.10.1016/j.polymer.2011.10.018Search in Google Scholar
[22] Langhe DS, Keum JK, Hiltner A, Baer E. J. Polym. Sci. Pol. Phys. 2011, 49, 159–171.10.1002/polb.22162Search in Google Scholar
[23] Alferey T, Schrenk WJ. Science 1980, 208, 813–818.10.1126/science.208.4446.813Search in Google Scholar PubMed
[24] Alferey T, Gurnee EF, Schrenk WJ. Polym. Eng. Sci. 1969, 9, 400–404.10.1002/pen.760090605Search in Google Scholar
[25] Im J, Schrenk WJ. J. Plast. Film. Sheet. 1988, 4, 104–115.10.1177/875608798800400204Search in Google Scholar
[26] Liu RYF, Bernal-Lara TE, Hiltner A, Baer E. Macromolecules 2005, 38, 4819–4827.10.1021/ma047292zSearch in Google Scholar
[27] Baer E, Hiltner A, Keith HD. Science 1987, 235, 1015–1022.10.1126/science.3823866Search in Google Scholar
[28] Lee PC, Dooley J, Robacki J, Jenkins S, Wrisley R. J. Plast. Film. Sheet. 2013, 30, 234–247.10.1177/8756087913506728Search in Google Scholar
[29] Lee PC, Dooley J. J. Plast. Film. Sheet. 2012, 29, 78–98.10.1177/8756087912450698Search in Google Scholar
[30] Shen J, Li J, Guo S. Polymer 2012, 53, 2519–2523.10.1016/j.polymer.2012.04.004Search in Google Scholar
[31] Velasco JI, Saja JAD, Martínez AB. J. Appl. Polym. Sci. 1996, 61, 125–132.10.1002/(SICI)1097-4628(19960705)61:1<125::AID-APP14>3.0.CO;2-6Search in Google Scholar
[32] Liu X, Wu Q, Berglund LA, Fan J, Qi Z. Polymer 2001, 42, 8235–8239.10.1016/S0032-3861(01)00307-XSearch in Google Scholar
[33] Qiu W, Mai K, Zeng H. J. Appl. Polym. Sci. 2000, 77, 2974–2977.10.1002/1097-4628(20000923)77:13<2974::AID-APP22>3.0.CO;2-RSearch in Google Scholar
[34] Wu CM, Chen M, Karger-Kocsis J. Polym. Bull. 1998, 41, 239–245.10.1007/s002890050357Search in Google Scholar
[35] Assouline E, Pohl S, Fulchiron R, Gérard J-F, Lustiger A, Wagner HD, Marom G. Polymer 2000, 41, 7843–7854.10.1016/S0032-3861(00)00113-0Search in Google Scholar
[36] Campbell D, Qayyum MM. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 83–93.10.1002/pol.1980.180180107Search in Google Scholar
[37] Jiang S, Qiao C, Tian S, Ji X, An L, Jiang B. Polymer 2001, 42, 5755–5761.10.1016/S0032-3861(01)00026-XSearch in Google Scholar
[38] Qiu F, Wang M, Hao YB, Guo SY. Compos. Part. A. 2014, 58, 7–15.10.1016/j.compositesa.2013.11.011Search in Google Scholar
[39] Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Polymer 1999, 40, 5967–5971.10.1016/S0032-3861(99)00166-4Search in Google Scholar
[40] Liu H, Shen Y, Song Y, Nan CW, Lin Y, Yang X. Adv. Mater. 2011, 23, 5104–5108.10.1002/adma.201102079Search in Google Scholar PubMed
[41] Ji J, Sui G, Yu Y, Liu Y, Lin Y, Du Z, Ryu S, Yang X. J. Phys. Chem. C. 2009, 113, 4779–4785.10.1021/jp8077198Search in Google Scholar
[42] Zhu Y, Du Z, Li H, Zhang C. Polym. Eng. Sci. 2011, 51, 1770–1779.10.1002/pen.21964Search in Google Scholar
[43] Šašić S, Jiang JH, Sato H, Ozaki Y. Analyst 2003, 128, 1097–1103.10.1039/B303245KSearch in Google Scholar
[44] Nepal D, Balasubramanian S, Simonian AL, Davis VA. Nano. Lett. 2008, 8, 1896–1901.10.1021/nl080522tSearch in Google Scholar PubMed
[45] Deng H, Zhang R, Bilotti E, Loos J, Peijs T. J. Appl. Polym. Sci. 2009, 113, 742–751.10.1002/app.29624Search in Google Scholar
[46] Shen J, Champagne MF, Gendron R, Guo S. Eur. Polym. J. 2012, 48, 930–939.10.1016/j.eurpolymj.2012.03.005Search in Google Scholar
[47] Saujanya C, Radhakrishnan S. Polymer 2001, 42, 6723–6731.10.1016/S0032-3861(01)00140-9Search in Google Scholar
[48] Marco C, Naffakh M, Gómez MA, Santoro G, Ellis G. Polym. Compos. 2011, 32, 324–333.10.1002/pc.21059Search in Google Scholar
[49] Xie XL, Aloys K, Zhou XP, Zeng FD. J. Therm. Anal. Calorim. 2003, 74, 317–323.10.1023/A:1026362727368Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
- Studies on the effects of 4,4′-dihydroxyphenyl on crystallization and melting behavior of poly (butylene terephthalate)
- Effect of the particulate morphology of resin on the gelation process of PVC plastisols
- Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites
- Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture
- Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system
- Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
- Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy
- Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
- Study of a novel co-rotating non-twin screw extruder in processing flame retardant polymer materials
- Thermal influences in the star-pre-distributor of a spiral mandrel die
Articles in the same Issue
- Frontmatter
- Original articles
- 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
- Studies on the effects of 4,4′-dihydroxyphenyl on crystallization and melting behavior of poly (butylene terephthalate)
- Effect of the particulate morphology of resin on the gelation process of PVC plastisols
- Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites
- Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture
- Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system
- Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
- Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy
- Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
- Study of a novel co-rotating non-twin screw extruder in processing flame retardant polymer materials
- Thermal influences in the star-pre-distributor of a spiral mandrel die