Abstract
In this research work, a two-dimensional model for randomly dispersed single-walled carbon nanotubes (SWCNT) in polymer hosts was used to predict the electrical percolation threshold (EPT) of the resulted composites in different concentrations of CNT. This was performed under a fixed DC voltage for different polymer matrices, such as high-density polyethylene, polymethyl methacrylate, polystyrene, polycarbonate, and polyethylene terephthalate via finite element method (FEM). The predicted EPT values in different composites were validated by experimental results published by other scientists. Results show that the electrical conductivity of the composites was strongly dependent on CNT weight percentages. Also, adding CNTs to the polymer matrix caused a decrease in the tunneling distance for various polymers in composites. Our results show that FEM could capture more details in the prediction of EPT in the nanocomposites.
References
[1] Iijima S. Nature 1991, 354, 56–58.10.1038/354056a0Suche in Google Scholar
[2] Faizabadi E. In Electronic Properties of Carbon Nanotubes, Marulanda JM, Ed., InTech Florida, 2011, pp 603–624.Suche in Google Scholar
[3] Saito R, Dresselhaus G, Dresselhaus MS. Physical Properties of Carbon Nanotubes, Imperial College Press: London, 1998.10.1142/p080Suche in Google Scholar
[4] Li YH, Lue JT. J. Nanosci. Nanotechnol. 2007, 7, 1–4.10.1166/jnn.2007.18011Suche in Google Scholar
[5] Inoue T, Hasegawa D, Chiashi S, Maruyama S. J. Mater. Chem. A 2015, 3, 15119–15123.10.1039/C5TA02679BSuche in Google Scholar
[6] Zha J-W, Gao Y, Zhang D-L, Wen Y, Li RKY, Shi C-Y, Dang Z-M. Compos. Sci. Technol. 2016, 128, 201–206.10.1016/j.compscitech.2016.04.002Suche in Google Scholar
[7] Han J-H, Zhang H, Chu P-F, Imani A, Zhang Z. Compos. Sci. Technol. 2015, 114, 1–10.10.1016/j.compscitech.2015.03.012Suche in Google Scholar
[8] Maiti S, Shrivastava NK, Suin S, Khatua BB. Exp. Polym. Lett. 2013, 7, 505–518.10.3144/expresspolymlett.2013.47Suche in Google Scholar
[9] Malekie S, Ziaie F. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectrom. Detect. Assoc. Equip. 2015, 791, 1–5.10.1016/j.nima.2015.04.031Suche in Google Scholar
[10] Puch F, Hopmann C. Polymer 2014, 55, 3015–3025.10.1016/j.polymer.2014.04.052Suche in Google Scholar
[11] Moon D, Obrzut J, Douglas JF, Lam T, Koziol KK, Migler KB. Polymer 2014, 55, 3270–3277.10.1016/j.polymer.2014.05.022Suche in Google Scholar
[12] Vennerberg D, Hall R, Kessler MR. Polymer 2014, 55, 4156–4163.10.1016/j.polymer.2014.06.020Suche in Google Scholar
[13] Yamamoto N, Guzman de Villoria R, Wardle BL. Compos. Sci. Technol. 2012, 72, 2009–2015.10.1016/j.compscitech.2012.09.006Suche in Google Scholar
[14] Gong S, Zhu ZH, Meguid SA. Polymer 2015, 56, 498–506.10.1016/j.polymer.2014.11.038Suche in Google Scholar
[15] Arbabi K, Larijani MM, Ramazanov M. Radiat. Protect. Dosimetry 2010, 141, 222–227.10.1093/rpd/ncq177Suche in Google Scholar PubMed
[16] Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Roberts J, Sayre P, Shelton B, Sultan Y, Vejins V, Wohlleben W. Carbon 2014, 68, 33–57.10.1016/j.carbon.2013.11.042Suche in Google Scholar
[17] McLachlan DS, Sauti G. Nanomaterials 2007, 2007, 1–9.10.1155/2007/30389Suche in Google Scholar
[18] Zdenko S, Dimitrios T. Prog. Polym. Sci. 2010, 35, 357–401.10.1016/j.progpolymsci.2009.09.003Suche in Google Scholar
[19] Belashi A, PhD, University of Toledo 2011.Suche in Google Scholar
[20] Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J. Sensors 2011, 11, 10691.10.3390/s111110691Suche in Google Scholar PubMed PubMed Central
[21] Bao WS, Meguid SA, Zhu ZH, Pan Y, Weng GJ. Mech. Mater. 2012, 46, 129–138.10.1016/j.mechmat.2011.12.006Suche in Google Scholar
[22] Sahimi M. Applications of Percolation Theory, Taylor & Francis: London, 1994.10.1201/9781482272444Suche in Google Scholar
[23] Bauhofer W, Kovacs JZ. Compos. Sci. Technol. 2009, 69, 1486–1498.10.1016/j.compscitech.2008.06.018Suche in Google Scholar
[24] Mun SC, Kim M, Prakashan K, Jung HJ, Son Y, Park OO. Carbon 2014, 67, 64–71.10.1016/j.carbon.2013.09.056Suche in Google Scholar
[25] Ram R, Rahaman M, Khastgir D. Compos. Part A Appl. Sci. Manuf. 2015, 69, 30–39.10.1016/j.compositesa.2014.11.003Suche in Google Scholar
[26] Katunin A, Krukiewicz K. J. Polym. Eng. 2015, 35, 731–741.10.1515/polyeng-2014-0206Suche in Google Scholar
[27] Georgousis G, Pandis C, Kalamiotis A, Georgiopoulos P, Kyritsis A, Kontou E, Pissis P, Micusik M, Czanikova K, Kulicek J, Omastova M. Compos. Part B Eng. 2015, 68, 162–169.10.1016/j.compositesb.2014.08.027Suche in Google Scholar
[28] Eletskii AV, Knizhnik AA, Potapkin BV, Kenny JM. Physics-Uspekhi 2015, 58, 209.10.3367/UFNe.0185.201503a.0225Suche in Google Scholar
[29] Amrin S, Deshpande VD. J. Mater. Sci. 2015, 51, 2453–2464.10.1007/s10853-015-9558-zSuche in Google Scholar
[30] Messiry ME. Alexandria Eng. J. 2013, 52, 301–306.10.1016/j.aej.2013.01.006Suche in Google Scholar
[31] Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathews N, Zhao Y. J. Phys. Chem. C 2011, 115, 21685–21690.10.1021/jp207388nSuche in Google Scholar
[32] Reddy J. An Introduction to the Finite Element Method, 3rd ed., McGraw-Hill Series in Mechanical Engineering, 2005.Suche in Google Scholar
[33] Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1987.Suche in Google Scholar
[34] Maiti S, Suin S, Shrivastava NK, Khatua BB. Synth. Metals 2013, 165, 40–50.10.1016/j.synthmet.2013.01.007Suche in Google Scholar
[35] Callister WD. Fundamentals of Materials Science and Engineering, 5th ed., John Wiley & Sons, Inc., The University of Utah, 2001.Suche in Google Scholar
[36] Apsley N, Hughes HP. Philos. Mag. 1974, 3, 963.10.1080/14786437408207250Suche in Google Scholar
[37] Saavedra MS. Department of Physics, University of Surrey: Guildford, Surrey, 2005, p 37.Suche in Google Scholar
[38] Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI. Macromolecules 2007, 40, 2417–2421.10.1021/ma0615046Suche in Google Scholar
[39] Jeon K, Lumata L, Tokumoto T, Steven E, Brooks J, Alamo RG. Polymer 2007, 48, 4751–4764.10.1016/j.polymer.2007.05.078Suche in Google Scholar
[40] Massey MK, Kotsialos A, Qaiser F, Zeze DA, Pearson C, Volpati D, Bowen L, Petty MC. J. Appl. Phys. 2015, 117, 134903.10.1063/1.4915343Suche in Google Scholar
[41] Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O. Synth. Metals 2001, 121, 1215–1216.10.1016/S0379-6779(00)00838-9Suche in Google Scholar
[42] Du F, Fischer JE, Winey KI. Phys. Rev. B 2005, 72, 121404.10.1103/PhysRevB.72.121404Suche in Google Scholar
[43] Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI. Macromolecules 2004, 37, 9048–9055.10.1021/ma049164gSuche in Google Scholar
[44] Dai J, Wang Q, Li W, Wei Z, Xu G. Mater. Lett. 2007, 61, 27–29.10.1016/j.matlet.2006.03.156Suche in Google Scholar
[45] Regev O, ElKati PNB, Loos J, Koning CE. Adv. Mater. 2004, 16, 248–251.10.1002/adma.200305728Suche in Google Scholar
[46] Ramasubramaniam R, Chen J, Liu H. Appl. Phys. Lett. 2003, 83, 2928–2930.10.1063/1.1616976Suche in Google Scholar
[47] Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP. Polymer 2006, 47, 7740–7746.10.1016/j.polymer.2006.09.013Suche in Google Scholar
[48] Ayesh AS, Ibrahim S, Abu-Abdeen M. J. Reinforced Plastics Compos. 2012, 31, 1113–1123.10.1177/0731684412453777Suche in Google Scholar
[49] Pötschke P, Hornbostel B, Roth S, Vohrer U, Dudkin SM, Alig I. AIP Conf. Proc. 2005, 786, 596–601.10.1063/1.2103938Suche in Google Scholar
[50] Hornbostel B, Pötschke P, Kotz J, Roth S. Phys. Status Solidi B 2006, 243, 3445–3451.10.1002/pssb.200669199Suche in Google Scholar
[51] Anand A, Agarwal U, Joseph R. J. Appl. Polym. Sci. 2007, 104, 3090–3095.10.1002/app.25674Suche in Google Scholar
[52] Grossiord N, Loos J, Laake LV, Maugey M, Zakri C, Koning CE, Hart AJ. Adv. Funct. Mater. 2008, 18, 3226–3234.10.1002/adfm.200800528Suche in Google Scholar
[53] Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C. Macromolecules 2003, 36, 5187–5194.10.1021/ma021263bSuche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- A facile method to prepare CdS/polymer nanocomposite fibers for the photodegradation of methylene blue under sunlight
- Waterborne epoxy-modified polyurethane-acrylate dispersions with nano-sized core-shell structure particles: synthesis, characterization, and their coating film properties
- Photo-crosslinking hyaluronan-heparin hybrid hydrogels for BMP-2 sustained delivery
- Effect of aluminum doped iron oxide nanoparticles on magnetic properties of the polyacrylonitrile nanofibers
- The effects of nanoclay on thermal, mechanical and rheological properties of LLDPE/chitosan blend
- Effect of fillers on the metallization of laser-structured polymer parts
- The effect of nitric acid (HNO3) treatment on the electrical conductivity and stability of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films
- Effect of thermal processing temperature on the microphase separation and mechanical properties of BAMO/THF polyurethane
- Experimental investigation on tensile and Charpy impact behavior of Kevlar/S-glass/epoxy hybrid composite laminates
- Effect of TiO2 nanoparticles on the viscoelastic and time-dependent behaviors of TiO2/epoxy particulate nanocomposite
- Morphology, thermal and mechanical performances of SR composites containing sepiolite and HGMs as binary fillers
- A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites
Artikel in diesem Heft
- Frontmatter
- Original articles
- A facile method to prepare CdS/polymer nanocomposite fibers for the photodegradation of methylene blue under sunlight
- Waterborne epoxy-modified polyurethane-acrylate dispersions with nano-sized core-shell structure particles: synthesis, characterization, and their coating film properties
- Photo-crosslinking hyaluronan-heparin hybrid hydrogels for BMP-2 sustained delivery
- Effect of aluminum doped iron oxide nanoparticles on magnetic properties of the polyacrylonitrile nanofibers
- The effects of nanoclay on thermal, mechanical and rheological properties of LLDPE/chitosan blend
- Effect of fillers on the metallization of laser-structured polymer parts
- The effect of nitric acid (HNO3) treatment on the electrical conductivity and stability of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films
- Effect of thermal processing temperature on the microphase separation and mechanical properties of BAMO/THF polyurethane
- Experimental investigation on tensile and Charpy impact behavior of Kevlar/S-glass/epoxy hybrid composite laminates
- Effect of TiO2 nanoparticles on the viscoelastic and time-dependent behaviors of TiO2/epoxy particulate nanocomposite
- Morphology, thermal and mechanical performances of SR composites containing sepiolite and HGMs as binary fillers
- A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites