Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
Abstract
Epoxy resin/montmorillonite nanocomposites were obtained via in situ intercalative polymerisation. The polymer matrix consists of anhydride-cured epoxy, and the choice of catalyst allows exchange reactions without depolymerisation. This makes the resin insoluble and reprocessable at the same time and potentially recyclable. In this study, reprocessing of the nanocomposites was done by mechanical grinding and re-welding by compression moulding at high temperature, similarly to thermoplastics. The effect of this process on the level of clay dispersion is discussed. Nanocomposite superstructures were imaged by means of transmission electron microscopy, and montmorillonite interlayer spacings were estimated by small angle X-ray scattering. The thermomechanical and combustion properties of the nanocomposites were investigated by means of dynamic mechanical thermal analysis, thermogravimetric analysis and cone calorimetry. The material tensile complex modulus E* was improved by nanocomposite formation, also after the glass transition occurred. Flammability of the material was moderately affected by the dispersed clay.
Acknowledgments:
The authors would like to thank Alain Tonetto of the Centre Commun de Microscopie de St. Charles, Aix-Marseille Université for the help with SAXS measurements and Jean-Paul Chauvin (IBDML Aix-Marseille Université) for the electron microscopy. We would also like to thank Fabio Cuttica for the help with cone calorimeter data collection, Dr. Florence Russo for her help with the materials synthesis and the MADIREL Laboratory of Aix-Marseille Université for letting us use their DMTA. The authors are indebted to Dr. Renaud Bouchet and Dr. Didier Devaux for their help in the interpretation of DMTA results and to Dr. Benoit Loppinet for the useful hints about the SAXS sample preparation.
References
[1] Dušek K, In Epoxy Resins and Composites III, Dušek K, Ed., Springer: Berlin, pp. 1–59, 1986.10.1007/BFb0035355Suche in Google Scholar
[2] Szymańska J, Bakar M, Kostrzewa M, Lavorgna M. J. Polym. Eng. 2015, 36, 43–52.10.1515/polyeng-2014-0393Suche in Google Scholar
[3] Messersmith PB, Giannelis EP. Chem. Mater. 1994, 6, 1719–1725.10.1021/cm00046a026Suche in Google Scholar
[4] Malik J, Clarson SJ. Surf. Coat. Int. B: Coat. Trans. 2003, 86, 9–20.10.1007/BF02699588Suche in Google Scholar
[5] Zilg C, Mülhaupt R, Finter J. Macromol. Chem. Phys. 1999, 200, 661–670.10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4Suche in Google Scholar
[6] Thelakkadan AS, Coletti G, Guastavino F, Fina A. Polym. Composite., 2011, 32, 1499–1504.10.1002/pc.21176Suche in Google Scholar
[7] Camino G, Tartaglione G, Frache A, Manferti C, Costa G. Polym. Degrad. Stabil. 2005, 90, 354–362.10.1016/j.polymdegradstab.2005.02.022Suche in Google Scholar
[8] Pickering SJ. Compos. A Appl. Sci. Manuf. 2006, 37, 1206–1215.10.1016/j.compositesa.2005.05.030Suche in Google Scholar
[9] Yang S, Chen J-S, Körner H, Breiner T, Ober CK, Poliks MD. Chem. Mater. 1998, 10, 1475–1482.10.1021/cm970667tSuche in Google Scholar
[10] Chen J-S, Ober CK, Poliks MD. Polymer 2002, 43, 131–139.10.1016/S0032-3861(01)00605-XSuche in Google Scholar
[11] Montarnal D, Capelot M, Tournilhac F, Leibler L. Science 2011, 334, 965–968.10.1126/science.1212648Suche in Google Scholar
[12] Capelot M, Montarnal D, Tournilhac F, Leibler L. J. Am. Chem. Soc. 2012, 134, 7664–7667.10.1021/ja302894kSuche in Google Scholar
[13] Chrzanowska A, Kurzyk J, Karbowniczek P. In Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, Fesenko O, Yatsenko L, Eds., Springer International Publishing: Cham, pp. 265–271, 2015.10.1007/978-3-319-18543-9_18Suche in Google Scholar
[14] Utomo A, Baker M, Pacek AW. Chem. Eng. Res. Des. 2009, 87, 533–542.10.1016/j.cherd.2008.12.011Suche in Google Scholar
[15] García del Cid M, Prolongo M, Salom C, Arribas C, Sánchez-Cabezudo M, Masegosa R, J. Therm. Anal. Calorim. 2012, 108, 741–749.10.1007/s10973-012-2215-8Suche in Google Scholar
[16] Capelot M, Chimie de polycondensation, polymères supramoléculaires et vitrimères. Université Pierre et Marie Curie-Paris VI, 2013.Suche in Google Scholar
[17] Schuchardt U, Sercheli R, Vargas RM. J. Braz. Chem. Soc. 1998, 9, 199–210.10.1590/S0103-50531998000300002Suche in Google Scholar
[18] Ngo TD, Wood-Adams PM, Hoa SV, Ton-That MT. J. Appl. Polym. Sci. 2011, 122, 561–572.10.1002/app.34180Suche in Google Scholar
[19] Park JH, Jana SC. Macromolecules 2003, 36, 2758–2768.10.1021/ma021509cSuche in Google Scholar
[20] Prolongo MG, Martínez-Casado FJ, Masegosa RM, Salom C. J. Nanosci. Nanotechnol. 2010, 10, 2870–2879.10.1166/jnn.2010.1385Suche in Google Scholar
[21] Chin I-J, Thurn-Albrecht T, Kim H-C, Russell TP, Wang J. Polymer 2001, 42, 5947–5952.10.1016/S0032-3861(00)00898-3Suche in Google Scholar
[22] Abdel Gawad A, Esawi AK, Ramadan A. J. Mater. Sci. 2010, 45, 6677–6684.10.1007/s10853-010-4760-5Suche in Google Scholar
[23] Touati N, Kaci M, Bruzaud S, Grohens Y. Polym. Degrad. Stabil. 2011, 96, 1064–1073.10.1016/j.polymdegradstab.2011.03.015Suche in Google Scholar
[24] Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R. Chem. Mater. 2001, 13, 2979–2990.10.1021/cm010305sSuche in Google Scholar
[25] Peila R, Malucelli G, Lazzari M, Priola A. Polym. Eng. Sci. 2010, 50, 1400–1407.10.1002/pen.21681Suche in Google Scholar
[26] Fina A, Bocchini S, Camino G. In Fire and Polymers V, Wilkie C, Morgan A, Gordon N, Eds., American Chemical Society: Washington, pp. 10–24, 2009.10.1021/bk-2009-1013.ch002Suche in Google Scholar
[27] Fina A, Camino G. Polym. Adv. Technol. 2011, 22, 1147–1155.10.1002/pat.1971Suche in Google Scholar
[28] Schartel B, Weiß A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX. Polym. Adv. Technol. 2011, 22, 1581–1592.10.1002/pat.1644Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Characterization of polymeric shape memory materials
- Original articles
- Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
- Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
- Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
- Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
- Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination
- Tailoring PES membrane morphology and properties via selected preparation parameters
- Preparation and characterization of pure and copper-doped PVC films
- Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam
- Processing of polycaprolactone and hydroxyapatite to fabricate graded electrospun composites for tendon-bone interface regeneration
Artikel in diesem Heft
- Frontmatter
- Review
- Characterization of polymeric shape memory materials
- Original articles
- Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
- Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
- Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
- Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
- Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination
- Tailoring PES membrane morphology and properties via selected preparation parameters
- Preparation and characterization of pure and copper-doped PVC films
- Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam
- Processing of polycaprolactone and hydroxyapatite to fabricate graded electrospun composites for tendon-bone interface regeneration