Startseite Preparation and characterization of graphene oxide/PMMA nanocomposites with amino-terminated vinyl polydimethylsiloxane phase interfaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and characterization of graphene oxide/PMMA nanocomposites with amino-terminated vinyl polydimethylsiloxane phase interfaces

  • Hongyan Li , Weian Wang , Lin Cheng , Jing Li , Yajing Li und Hongli Liu EMAIL logo
Veröffentlicht/Copyright: 27. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Graphene oxide (GO) was prepared by the Hummers method and was grafted by an amino-terminated vinyl polydimethylsiloxane (AP). The AP-modified GO (GO-AP) was incorporated in poly(methylmethacrylate) (PMMA) to prepare nanocomposites. Raman microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis were used to characterize the particles. The mechanical properties, thermal stability, thermal conductivity, and dispersing status of the PMMA-based nanocomposites were also investigated. The results indicated that AP was grafted on the surface of GO via the amidation reaction, and the quantity of the grafted AP was approximately 20 wt% that of GO-AP. With the addition of GO-AP, the three-point bending strength of GO-AP/PMMA increased to approximately 58 MPa, and the dispersion of the particles was also enhanced. GO wrapped by AP could not form thermal conducting networks at the percolation thresholds. The increasing amount of AP prevented the formation of thermal conduction network and decreased the thermal conductivity of the composites. The thermal stability of the composites was affected by three main reasons, and the total effect of the three reasons on thermal stability illustrated a negative trend.


Corresponding author: Hongli Liu, School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China, e-mail:

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grants 51503141 and 51472175) and the Natural Science Foundation of Tianjin City (Grant 15JCTPJC63400).

References

[1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science 2004, 306, 666–669.10.1126/science.1102896Suche in Google Scholar PubMed

[2] Park S, Ruoff RS. Nat. Nanotechnol. 2009, 4, 217–224.10.1038/nnano.2009.58Suche in Google Scholar PubMed

[3] Geim AK. Science 2009, 324, 1530–1534.10.1126/science.1158877Suche in Google Scholar PubMed

[4] Geim AK, Novoselov KS. Nat. Mater. 2007, 6, 183–191.10.1038/nmat1849Suche in Google Scholar PubMed

[5] Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. J. Mater. Chem. 2011, 21, 3301–3310.10.1039/C0JM02708ASuche in Google Scholar

[6] Singh V, Joung D, Zhai L, Dasa S, Khondakera SI, Seal S. Prog. Mater. Sci. 2011, 56, 1178–1271.10.1016/j.pmatsci.2011.03.003Suche in Google Scholar

[7] Hu KS, Kulkarni DD, Choi I, Tsukruk VV. Prog. Polym. Sci. 2014, 39, 1934–1972.10.1016/j.progpolymsci.2014.03.001Suche in Google Scholar

[8] Chen DQ, Chen GH. J. Reinf. Plast. Comp. 2013, 32, 300–307.10.1177/0731684412471230Suche in Google Scholar

[9] Saravanan N, Rajasekar R, Mahalakshmi S, Sathiskumar TP, Sasikumar KSK, Sahoo S. J. Reinf. Plast. Comp. 2014, 33, 1158–1180.10.1177/0731684414524847Suche in Google Scholar

[10] Fan W, Li JL, Wang H, Guo D-d. J. Reinf. Plast. Comp. 2015, 34, 116–130.10.1177/0731684414565225Suche in Google Scholar

[11] Geng Y, Wang SJ, Kim JK. J. Colloid Interface Sci. 2009, 336, 592–598.10.1016/j.jcis.2009.04.005Suche in Google Scholar PubMed

[12] Chen W, Yan L. Nanoscale 2010, 2, 559–563.10.1039/b9nr00191cSuche in Google Scholar PubMed

[13] Hummers Jr WS, Offeman RE. J. Am. Chem. Soc. 1958, 80, 1339–1339.10.1021/ja01539a017Suche in Google Scholar

[14] Kotov NA. Nature 2006, 442, 254–255.10.1038/442254aSuche in Google Scholar PubMed

[15] Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Nat. Nanotechnol. 2008, 3, 101–105.10.1038/nnano.2007.451Suche in Google Scholar PubMed

[16] Liang Y, Wu D, Feng X, Müllen K. Adv. Mater. 2009, 21, 1679–1683.10.1002/adma.200803160Suche in Google Scholar

[17] Villar-Rodil S, Paredes JI, Martínez-Alonso A, Tascón JMD. J. Mater. Chem. 2009, 19, 3591–3593.10.1039/b904935eSuche in Google Scholar

[18] Lee HB, Raghu AV, Yoon KS, Jeong HM. J. Macromol. Sci. Pt. B Phys. 2010, 49, 802–809.10.1080/00222341003603701Suche in Google Scholar

[19] Cano M, Khan U, Sainsbury T, O’Neill A, Wang Z, McGovern IT, Maser WK, Benito AM, Coleman JN. Carbon 2013, 52, 363–371.10.1016/j.carbon.2012.09.046Suche in Google Scholar

[20] Fang M, Wang K, Lu H, Yang Y, Nutt S. J. Mater. Chem. 2010, 20, 1982–1992.10.1039/b919078cSuche in Google Scholar

[21] Cai D, Jin J, Yusoh K, Rafiq R, Song M. Compos. Sci. Technol. 2012, 72, 702–707.10.1016/j.compscitech.2012.01.020Suche in Google Scholar

[22] Yan JL, Qi GQ, Cao J, Luo Y, Yang W, Xie B-H, Yang M-B. Chem. Lett. 2012, 41, 683–685.10.1246/cl.2012.683Suche in Google Scholar

[23] Lonkar SP, Deshmukh YS, Abdala AA. Nano Res. 2015, 8, 1039–1074.10.1007/s12274-014-0622-9Suche in Google Scholar

[24] Li W, Zhou B, Wang M, Li Z, Ren R. J. Mater. Sci. 2015, 50, 5402–5410.10.1007/s10853-015-9084-zSuche in Google Scholar

[25] Yang J, Yan X, Wu M, Chen F, Fei Z, Zhong M. J. Nanopart. Res. 2012, 14, 1–9.10.1007/s11051-011-0717-0Suche in Google Scholar

[26] Pramoda KP, Hussain H, Koh HM, Tan HR, He CB. J. Polym. Sci. Pt. A Polym. Chem. 2010, 48, 4262–4267.10.1002/pola.24212Suche in Google Scholar

[27] Xue G, Zhong J, Gao S, Wang B. Carbon 2016, 96, 871–878.10.1016/j.carbon.2015.10.041Suche in Google Scholar

[28] Li M, Gao C, Hu H, Zhao Z. Carbon 2013, 65, 371–373.10.1016/j.carbon.2013.08.016Suche in Google Scholar

[29] Moriche R, Prolongo SG, Sánchez M, Jiménez-Suárez A, Sayagués MJ, Ureña A. Compos. Pt. B Eng. 2015, 72, 199–205.10.1016/j.compositesb.2014.12.012Suche in Google Scholar

[30] Englert JM, Vecera P, Knirsch KC, Schäfer RA, Hauke F, Hirsch A. ACS Nano. 2013, 7, 5472–5482.10.1021/nn401481hSuche in Google Scholar PubMed

[31] Eigler S, Dotzer C, Hirsch A. Carbon 2012, 50, 3666–3673.10.1016/j.carbon.2012.03.039Suche in Google Scholar

[32] Chen F, Jiang X, Liu R, Yin J. ACS Appl. Mater. Interfaces 2010, 2, 1031–1037.10.1021/am900758jSuche in Google Scholar PubMed

[33] Cui L, Tarte NH, Woo SI. Macromolecules 2009, 42, 8649–8654.10.1021/ma901609rSuche in Google Scholar

[34] Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z. Colloid Polym. Sci. 2014, 292, 2971–2981.10.1007/s00396-014-3349-ySuche in Google Scholar

[35] Jeong HM, Choi MY, Ahn YT. Macromol. Res. 2006, 14, 312–317.10.1007/BF03219087Suche in Google Scholar

[36] Nath DCD, Sahajwalla V. J. Hazard Mater. 2011, 192, 691–697.10.1016/j.jhazmat.2011.05.072Suche in Google Scholar PubMed

[37] Chen M, Yin J, Jin R, Yao L, Su B, Lei Q. Thin Solid Films 2015, 584, 232–237.10.1016/j.tsf.2015.01.005Suche in Google Scholar

[38] Skountzos EN, Anastassiou A, Mavrantzas VG, Theodorou DN. Macromolecules 2014, 47, 8072–8088.10.1021/ma5017693Suche in Google Scholar

[39] Li H, Wang H, Wu Y, Zhang X, Zheng J. Sci. Adv. Mater. 2013, 5, 107–115.10.1166/sam.2013.1525Suche in Google Scholar

[40] Li H, Wang H, Wu Y, Zhang X, Zheng J. Sci. Adv. Mater. 2013, 5, 453–461.10.1166/sam.2013.1475Suche in Google Scholar

Received: 2015-10-7
Accepted: 2015-12-30
Published Online: 2016-2-27
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0421/html?lang=de
Button zum nach oben scrollen