Abstract
Cellulose derivatives, such as cellulose acetate (CA), are commonly used due to their ease of processing. These polymers present interesting mechanical properties and biodegradability, but low thermal stability under melt processing conditions. Composites of carbon nanotubes (CNTs) and cellulose derivatives are expected to present enhanced properties, depending on the effect of nanotubes on polymer structure and thermal properties. This work aims to investigate the influence of melt mixing on the stability of CA and its CNT composites. Composites with 0 wt%, 0.1 wt% and 0.5 wt% CNTs, as received and functionalized with pyrrolidine groups, were prepared using a batch mixer and an extruder. Chain scission of CA occurred during processing, but the effect was considerably reduced in the presence of CNTs. The incorporation of small amounts of CNTs (with or without functionalization) decreased polymer degradation by thermomechanical effects induced during polymer processing.
Acknowledgments
The authors acknowledge the Portuguese Foundation for Science and Technology (SFRH/BD/81711/2011) and n-STeP – Nanostructured systems for Tailored Properties, with reference NORTE-07-0124-FEDER-000039, supported by the Programa Operacional Regional do Norte (ON.2).
References
[1] Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK. Prog. Polym. Sci. 2013, 38, 1653–1689.10.1016/j.progpolymsci.2013.05.006Suche in Google Scholar
[2] Aryasomayajula, Wolter K-J. J. Nanotechnol. 2013, 2013.10.1155/2013/296517Suche in Google Scholar
[3] Ma P-C, Siddiqui NA, Marom G, Kim J-K. Composites, Part A 2010, 41, 1345–1367.10.1016/j.compositesa.2010.07.003Suche in Google Scholar
[4] Miller R-J. Biodegradability of Polymer: Regulations and Methods for Testing, John Wiley and Sons, Inc.: Published Online, 2005.Suche in Google Scholar
[5] Li Y, Wu M, Liu R, Huang YM. Sol. Energy Mater. Sol. Cells 2009, 93, 1321–1328.10.1016/j.solmat.2009.02.005Suche in Google Scholar
[6] Schiffman JD, Schauer CL. Polym. Rev. 2008, 48, 317–352.10.1080/15583720802022182Suche in Google Scholar
[7] Jeon GW, An J-E, Jeong YG. Composites, Part B 2012, 43, 3412–3418.10.1016/j.compositesb.2012.01.023Suche in Google Scholar
[8] Gutiérrez MC, De Paoli M-A, Felisberti MI. Ind. Crops Prod. 2014, 52, 363–372.10.1016/j.indcrop.2013.10.054Suche in Google Scholar
[9] Barmpalexis P, Koutsidis I, Karavas E, Louka D, Papadimitriou SA, Bikiaris DN. Eur. J. Pharm. Biopharm. 2013, 85, 1219–1231.10.1016/j.ejpb.2013.03.013Suche in Google Scholar PubMed
[10] El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M. Desalination 2014, 344, 79–85.10.1016/j.desal.2014.03.005Suche in Google Scholar
[11] Liu B-T, Hsu C-H, Wang W-H. J. Taiwan Inst. Chem. Eng. 2012, 43, 147–152.10.1016/j.jtice.2011.06.013Suche in Google Scholar
[12] Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomas H, Zhu M, Shi X. Carbohydr. Polym. 2013, 91, 419–427.10.1016/j.carbpol.2012.08.069Suche in Google Scholar PubMed
[13] Madaeni SS, Derakhshandeh K, Ahmadi S, Vatanpour V, Zinadini S. J. Membr. Sci. 2012, 389, 110–116.10.1016/j.memsci.2011.10.021Suche in Google Scholar
[14] Qi H, Mäder E, Liu J. Sens. Actuators, B 2013, 185, 225–230.10.1016/j.snb.2013.04.116Suche in Google Scholar
[15] Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S. Polymer 2009, 50, 4577–4583.10.1016/j.polymer.2009.07.015Suche in Google Scholar
[16] Wan J, Yan X, Ding J, Ren R. Sens. Actuators, B 2010, 146, 221–225.10.1016/j.snb.2010.02.037Suche in Google Scholar
[17] Wu X, Zhao F, Varcoe JR, Thumser AE, Avignone-Rossa C, Slade RC. Bioelectrochemistry 2009, 77, 64–68.10.1016/j.bioelechem.2009.05.008Suche in Google Scholar PubMed
[18] Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA. Polym. Test. 2013, 32, 1123–1127.10.1016/j.polymertesting.2013.06.012Suche in Google Scholar
[19] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog. Polym. Sci. 2010, 35, 357–401.10.1016/j.progpolymsci.2009.09.003Suche in Google Scholar
[20] Liu P. Eur. Polym. J. 2005, 41, 2693–2703.10.1016/j.eurpolymj.2005.05.017Suche in Google Scholar
[21] Paiva MC, Simon F, Novais R, Ferreira T, Proença M, Xu W, Besenbacher F. ACSNano 2010, 4, 7379–7386.10.1021/nn1022523Suche in Google Scholar PubMed
[22] Li M, Kim I-H, Jeong YG. J. Appl. Polym. Sci. 2010, 118, 2475–2481.10.1002/app.32371Suche in Google Scholar
[23] Barud HS, Araújo Júnior AM, Santos DB, Assunção RMN, Meireles CS, Cerqueira DA, Rodrigues Filho G, Ribeiro CA, Messaddeq Y, Ribeiro SJL. Thermochim. Acta 2008, 471, 61–69.10.1016/j.tca.2008.02.009Suche in Google Scholar
[24] Littlejohn D, Pethrick RA, Quye A, Ballany JM. Polym. Degrad. Stab. 2013, 98, 416–424.10.1016/j.polymdegradstab.2012.08.023Suche in Google Scholar
[25] Rambaldi DC, Suryawanshi C, Eng C, Preusser FD. Polym. Degrad. Stab. 2013, 107, 237–245.10.1016/j.polymdegradstab.2013.12.004Suche in Google Scholar
[26] Knight B. Polym. Degrad. Stab. 2014, 107, 219–222.10.1016/j.polymdegradstab.2013.12.002Suche in Google Scholar
[27] Zavastin D, Cretescu I, Bezdadea M, Bourceanu M, Drăgan M, Lisa G, Mangalagiu I, Vasić V, Savić J. Colloids Surf. A 2010, 370, 120–128.10.1016/j.colsurfa.2010.08.058Suche in Google Scholar
[28] Young J, Hun S. In High Performance PET/Carbon Nanotube Nanocomposites: Preparation, Characterization, Properties and Applications, Ebrahimi F, Ed., InTech: 2012, p 97–121.10.5772/50413Suche in Google Scholar
[29] Kim JY, Han SI, Hong S. Polymer 2008, 49, 3335–3345.10.1016/j.polymer.2008.05.024Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- Preparation and characterization of graphene oxide/PMMA nanocomposites with amino-terminated vinyl polydimethylsiloxane phase interfaces
- Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites
- Synthesis of spherical porous cross-linked glutaraldehyde/poly(vinyl alcohol) hydrogels
- Influence of process parameters on property of PP/EPDM blends prepared by a novel vane extruder
- Influence of processing conditions on heat sealing behavior and resultant heat seal strength for peelable heat sealing of multilayered polyethylene films
- Thermal degradation kinetics and lifetime of HDPE/PLLA/pro-oxidant blends
- Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites
- The influence of melt mixing on the stability of cellulose acetate and its carbon nanotube composites
- Experimental analysis of resin infusion in air cushion method
- 3D-MID manufacturing via laser direct structuring with nanosecond laser pulses
Artikel in diesem Heft
- Frontmatter
- Original articles
- Preparation and characterization of graphene oxide/PMMA nanocomposites with amino-terminated vinyl polydimethylsiloxane phase interfaces
- Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites
- Synthesis of spherical porous cross-linked glutaraldehyde/poly(vinyl alcohol) hydrogels
- Influence of process parameters on property of PP/EPDM blends prepared by a novel vane extruder
- Influence of processing conditions on heat sealing behavior and resultant heat seal strength for peelable heat sealing of multilayered polyethylene films
- Thermal degradation kinetics and lifetime of HDPE/PLLA/pro-oxidant blends
- Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites
- The influence of melt mixing on the stability of cellulose acetate and its carbon nanotube composites
- Experimental analysis of resin infusion in air cushion method
- 3D-MID manufacturing via laser direct structuring with nanosecond laser pulses