Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
-
Jing-Hua Tan
, Yuan-Fang Luo
Abstract
Natural rubber (NR)/montmorillonite (MMT) nanocomposites compatibilized with epoxidized natural rubber (ENR) were produced by latex compounding method. The effects of ENR as a compatibilizer on NR/MMT nanocomposites were investigated. The addition of ENR brought intercalation or exfoliation of the clay, which improved the clay dispersion in the rubber matrix, as characterized by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The interfacial interaction of ENR with MMT was investigated by Fourier transform infrared spectroscopy (FTIR). The vulcanization was hindered by the incorporation of ENR, while the mechanical performances, thermal stability and ageing resistance were improved. The glass transition temperature and storage modulus increased with ENR loading, which was corroborated by dynamic mechanical analysis (DMA).
Funding source: Hunan Provincial Science and Technology Department
Award Identifier / Grant number: 2014GK3101
Funding source: Hunan Provincial Science and Technology Department
Award Identifier / Grant number: 2015GK3025
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: U1134005
Funding statement: The authors gratefully acknowledge the financial support by Scientific Research Fund of Hunan Provincial Education Department (No. 14C0345 and 14C0344), Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2014GK3101 and 2015GK3025), National Natural Science Foundation of China (NSFC)-Union Funded Projects of Guangdong Province (No. U1134005) and Inquiry learning and innovative experiment projects of Hunan Province College students.
Acknowledgments:
The authors gratefully acknowledge the financial support by Scientific Research Fund of Hunan Provincial Education Department (No. 14C0345 and 14C0344), Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2014GK3101 and 2015GK3025), National Natural Science Foundation of China (NSFC)-Union Funded Projects of Guangdong Province (No. U1134005) and Inquiry learning and innovative experiment projects of Hunan Province College students.
References
[1] Pavlidou S, Papaspyrides CD. Prog. Polym. Sci. 2008, 33, 1119–1198.10.1016/j.progpolymsci.2008.07.008Suche in Google Scholar
[2] Okada A, Usuki A. Macromol. Mater. Eng. 2006, 291, 1449–1476.10.1002/mame.200600260Suche in Google Scholar
[3] Liu MX, Jia ZX, Jia DM, Zhou CR. Prog. Polym. Sci. 2014, 39, 1498–1525.10.1016/j.progpolymsci.2014.04.004Suche in Google Scholar
[4] Tolooei S, Naderi G, Shokoohi S, Soltani S. J. Polym. Eng. 2013, 33, 133–139.10.1515/polyeng-2012-0143Suche in Google Scholar
[5] Nouparvar H, Hassan A, Mohamad Z, Wahit MU, Roozbahani F. J. Polym. Eng. 2014, 34, 59–68.10.1515/polyeng-2013-0066Suche in Google Scholar
[6] Choudalakis G, Gotsis AD. Eur. Polym. J. 2009, 45, 967–984.10.1016/j.eurpolymj.2009.01.027Suche in Google Scholar
[7] Arroyo M, López-Manchado MA, Herrero B. Polymer 2003, 44, 2447–2453.10.1016/S0032-3861(03)00090-9Suche in Google Scholar
[8] Ray SS, Okamoto M. Prog. Polym. Sci. 2003, 28, 1539–1641.10.1016/j.progpolymsci.2003.08.002Suche in Google Scholar
[9] Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US. J. Appl. Polym. Sci. 2004, 94, 2438–2445.10.1002/app.21188Suche in Google Scholar
[10] Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US. J. Appl. Polym. Sci. 2006, 100, 1083–1092.10.1002/app.23452Suche in Google Scholar
[11] Wang L, Xiang PY, Zhang LQ, Wu YP. J. Appl. Polym. Sci. 2013, 128, 2578–2584.10.1002/app.38574Suche in Google Scholar
[12] Arroyo M, López-Manchado MA, Valentín JL, Carretero J. Compos. Sci. Technol. 2007, 67, 1330–1339.10.1016/j.compscitech.2006.09.019Suche in Google Scholar
[13] Hamza SS. El-sabbagh S, Shokr F. Int. J. Polymer. Mater. 2008, 57, 203–215.10.1080/00914030701413330Suche in Google Scholar
[14] Malas A, Das CK. Mater. Des. 2013, 49, 857–865.10.1016/j.matdes.2013.02.040Suche in Google Scholar
[15] Teh PL, Mohd Ishak ZA, Hashim AS, Karger-kocsis J, Ishiaku US. Eur. Polym. J. 2004, 40, 2513–2521.10.1016/j.eurpolymj.2004.06.025Suche in Google Scholar
[16] Doğan M, Oral DD, Yilmaz B, Savu M, Karahan S, Bayramli E. J. Appl. Polym. Sci. 2011, 121, 1530–1535.10.1002/app.33690Suche in Google Scholar
[17] Pal K, Rajasekar R, Kang DJ, Zhang ZX, Kim JK, Das CK. Mater. Des. 2009, 30, 4035–4042.10.1016/j.matdes.2009.05.021Suche in Google Scholar
[18] Rajasekar R, Heinrich G, Das A, Das CK. Res. Lett. Nanotechnol. 2009, 2009, 1–5.10.1155/2009/405153Suche in Google Scholar
[19] Rajasekar R, Pal K, Heinrich G, Das A, Das CK. Mater. Des. 2009, 30, 3839–3845.10.1016/j.matdes.2009.03.014Suche in Google Scholar
[20] Madani M, Alyb RA. Mater. Des. 2010, 31, 1444–1449.10.1016/j.matdes.2009.08.047Suche in Google Scholar
[21] Wang YZ, Zhang LQ, Tang CH, Yu DS. J. Appl. Polym. Sci. 2000, 78, 1879–1883.10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1Suche in Google Scholar
[22] Wu YP, Jia QX, Yu DS, Zhang LQ. J. Appl. Polym. Sci. 2003, 89, 3855–3858.10.1002/app.12568Suche in Google Scholar
[23] Wang YQ, Zhang HF, Wu YP, Yang J, Zhang LQ. J. Appl. Polym. Sci. 2005, 96, 318–323.10.1002/app.21408Suche in Google Scholar
[24] Varghese S, Karger-Kocsis J. Polymer 2003, 44, 4921–4927.10.1016/S0032-3861(03)00480-4Suche in Google Scholar
[25] Wang XP, Huang AM, Jia DM, Li YM. Eur. Polym. J. 2008, 44, 2784–2789.10.1016/j.eurpolymj.2008.06.035Suche in Google Scholar
[26] Tan JH, Wang XP, Luo YF, Jia DM. Mater. Des. 2012, 34, 825–831.10.1016/j.matdes.2011.07.015Suche in Google Scholar
[27] Amornchaiyapitak C, Taweepreda W, Tangboriboonrat P. Eur. Polym. J. 2008, 44, 1782–1788.10.1016/j.eurpolymj.2008.03.002Suche in Google Scholar
[28] Zyl AJ, Graef SM, Sanderson RD, Klumperman B, Pasch H. J. Appl. Polym. Sci. 2003, 88, 2539–2549.10.1002/app.12061Suche in Google Scholar
[29] Gan SN, Hamid ZA. Polymer 1997, 38, 1953–1956.10.1016/S0032-3861(96)00710-0Suche in Google Scholar
[30] Loo LS, Gleason KK. Macromolecules 2003, 36, 2587–2590.10.1021/ma0259057Suche in Google Scholar
[31] Sun YH, Luo YF, Jia DM. J. Appl. Polym. Sci. 2008, 107, 2786–2792.10.1002/app.26539Suche in Google Scholar
[32] Manna AK, Tripathy DK, De PP, De SK, Chatterjee MK, Peiffer DG. J. Appl. Polym. Sci. 1999, 72, 1895–1903.10.1002/(SICI)1097-4628(19990628)72:14<1895::AID-APP10>3.0.CO;2-2Suche in Google Scholar
[33] Varghese S, Gatos KG, Apostolov AA, Karger-Kocsis J. J. Appl. Polym. Sci. 2004, 92, 543–551.10.1002/app.20036Suche in Google Scholar
[34] Ismail H, Leong HC. Polym. Test. 2001, 20, 509–516.10.1016/S0142-9418(00)00067-2Suche in Google Scholar
[35] Khanlari S, Kokabi M. J. Appl. Polym. Sci. 2011, 119, 855–862.10.1002/app.32781Suche in Google Scholar
[36] Roy S, Gupta BR, Chaki TK. Kautsch. Gummi Kunstst. 1993, 46, 293–296.Suche in Google Scholar
[37] Liu L, Jia DM, Luo YF, Guo BC. J. Appl. Polym. Sci. 2006, 100, 1905–1913.10.1002/app.22614Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Characterization of polymeric shape memory materials
- Original articles
- Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
- Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
- Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
- Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
- Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination
- Tailoring PES membrane morphology and properties via selected preparation parameters
- Preparation and characterization of pure and copper-doped PVC films
- Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam
- Processing of polycaprolactone and hydroxyapatite to fabricate graded electrospun composites for tendon-bone interface regeneration
Artikel in diesem Heft
- Frontmatter
- Review
- Characterization of polymeric shape memory materials
- Original articles
- Reworkable layered silicate-epoxy nanocomposites: synthesis, thermomechanical properties and combustion behaviour
- Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
- Effects of epoxidized natural rubber as a compatibilizer on latex compounded natural rubber-clay nanocomposites
- Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
- Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination
- Tailoring PES membrane morphology and properties via selected preparation parameters
- Preparation and characterization of pure and copper-doped PVC films
- Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam
- Processing of polycaprolactone and hydroxyapatite to fabricate graded electrospun composites for tendon-bone interface regeneration