Startseite Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites

  • Pan Yusong EMAIL logo , Chen Yan , Shen Qianqian und Pan Chengling
Veröffentlicht/Copyright: 14. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Biomaterials used as loading-bearing orthopedic implants usually require various excellent properties such as mechanical, bioactive and bio-tribological performances. Moreover, all of the orthopedic applications feature stress concentrations (notch sensitivity) in their design. In the present work, hydroxyapatite-reinforced polyetheretherketone functional gradient biocomposites (HA/PEEK FGBm) were successfully prepared by the layer stacking method combined with hot pressing molding technology. The effects of notch geometry on the stress-strain behavior of HA/PEEK FGBm were evaluated. The fracture morphology was investigated by scanning electron microscopy (SEM). The study of the stress-strain behavior indicated that the tensile and flexural stresses of HA/PEEK FGBm linearly increased with increasing strain under all the notch sensitivities. The fracture strain of the biocomposites decreased with increasing stress concentration factor and total HA content in the functional biocomposites. Moreover, the tensile and flexural strengths of HA/PEEK FGBm were lower than those of homogeneous HA/PEEK biocomposites. The SEM observation of the fracture micro-morphology showed that the fracture mechanism of HA/PEEK FGBm was gradually controlled by the brittle fracture process. Furthermore, both the tensile and the flexural strengths of HA/PEEK FGBm decreased with the increase in stress concentration factor and total HA content in the biocomposites.


Corresponding author: Pan Yusong, School of Material Science and Engineering, An Hui University of Science and Technology, Huai Nan, 232001, China, e-mail:

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant no. 51175004).

References

[1] Kurtz SM, Devine JN. Biomaterials 2007, 28, 4845–4869.10.1016/j.biomaterials.2007.07.013Suche in Google Scholar PubMed PubMed Central

[2] Kyomoto M, Moro T, Yamane S, Hashimoto M, Takatori Y, Ishihara K. Biomaterials 2013, 34, 7829–7839.10.1016/j.biomaterials.2013.07.023Suche in Google Scholar PubMed

[3] Stolarski TA, Gawarkiewicz R. Tribol. Int. 2015, 81, 9–18.10.1016/j.triboint.2014.07.018Suche in Google Scholar

[4] Petrovic L, Pohle D, Munstedt H, Rechtenwald T, Schlegel KA, Rupprecht S. J. Biomed. Sci. 2006, 13, 41–46.10.1007/s11373-005-9032-zSuche in Google Scholar PubMed

[5] Almasi D, Izman S, Assadian M, Ghanbari M, Kadir MR. Appl. Surf. Sci. 2014, 314, 1034–1040.10.1016/j.apsusc.2014.06.074Suche in Google Scholar

[6] Ni Z, Hua WY, Jiang ZH, Liang XY, Liang QH. Polym. Mater. Sci. Eng. 2013, 29, 74–77.Suche in Google Scholar

[7] Pan YS, Shen QQ, Chen Y, Yu K, Pan CL, Zhang L. Mater. Technol. 2015, 30, 257–263.10.1179/1753555714Y.0000000179Suche in Google Scholar

[8] Lee JH, Jang HL, Lee KM, Baek HR, Jin K, Hong KS, Noh JH, Lee HK. Acta Biomater. 2013, 9, 6177–6187.10.1016/j.actbio.2012.11.030Suche in Google Scholar PubMed

[9] Gabriel LC, Yue WM, Roeder RK. Biomaterials 2007, 28, 927–935.10.1016/j.biomaterials.2006.10.031Suche in Google Scholar PubMed

[10] Rae P, Brown E, Orler E. Polymer 2007, 48, 598–615.10.1016/j.polymer.2006.11.032Suche in Google Scholar

[11] Jaekel DJ, Macdonald DW, Kurtz SM. J. Mech. Behav. Biomed. Mater. 2011, 4, 1275–1282.10.1016/j.jmbbm.2011.04.014Suche in Google Scholar PubMed

[12] Li J, Zhang LQ. Polym. Compos. 2010, 31, 1315–1320.10.1002/pc.20986Suche in Google Scholar

[13] Sobieraj MC, Murphy JE, Brinkman JG, Kurtz SM, Rimnac CM. Biomaterials 2010, 31, 9156–9162.10.1016/j.biomaterials.2010.08.032Suche in Google Scholar

[14] Capozucca R, Bonci B. Compos. Struct. 2015, 122, 367–375.10.1016/j.compstruct.2014.11.062Suche in Google Scholar

[15] Pan YS, Shen QQ, Chen Y. Micro Nano Lett. 2013, 8, 357–361.10.1049/mnl.2013.0265Suche in Google Scholar

[16] Noda NA, Ohtsuka H, Zhang H, Sano Y, Ando M, Shinozaki T, Guan W. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 125–138.10.1111/ffe.12228Suche in Google Scholar

[17] Lorenzino P, Navarro A. Int. J. Fatigue 2015, 70, 205–215.10.1016/j.ijfatigue.2014.09.012Suche in Google Scholar

[18] Huang BS, Zhao GH, Wang ZH. Appl. Mech. Mater. 2014, 556–562, 725–728.10.4028/www.scientific.net/AMM.556-562.725Suche in Google Scholar

[19] Busscher HJ, Jong HP, Arends J. Mater. Chem. Phys. 1987, 17, 553–558.10.1016/0254-0584(87)90014-9Suche in Google Scholar

[20] Zhu QX, Wu JQ, Feng Q, Wang HP. Mater. Sci. Forum: Mater. Res. 2009, 610–613, 1203–1207.10.4028/www.scientific.net/MSF.610-613.1203Suche in Google Scholar

[21] Pan YS, Wang J, Pan CL. Micro Nano Lett. 2012, 7, 880–884.10.1049/mnl.2012.0768Suche in Google Scholar

[22] Tang SM, Cheang P, Abubakar MS, Khor KA, Liao K. Int. J. Fatigue 2004, 26, 49–57.10.1016/S0142-1123(03)00080-XSuche in Google Scholar

[23] Zare Y, Garmabi H. Appl. Surf. Sci. 2014, 321, 219–225.10.1016/j.apsusc.2014.09.156Suche in Google Scholar

[24] Ahn JS, Woo KS. J. Compos. Mater. 2014, 48, 3–20.10.1177/0021998312467551Suche in Google Scholar

[25] Shady E, Gowayed Y. Polym. Compos. 2010, 31, 1838–1845.10.1002/pc.20976Suche in Google Scholar

[26] Qing H. Comput. Mater. Sci. 2014, 89, 102–113.10.1016/j.commatsci.2014.03.046Suche in Google Scholar

Received: 2015-7-4
Accepted: 2015-12-4
Published Online: 2016-1-14
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0304/html?lang=de
Button zum nach oben scrollen