Startseite Morphology and thermomechanical properties of epoxy composites highly filled with waste bulk molding compounds (BMC)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Morphology and thermomechanical properties of epoxy composites highly filled with waste bulk molding compounds (BMC)

  • Danuta Matykiewicz EMAIL logo , Mateusz Barczewski und Tomasz Sterzyński
Veröffentlicht/Copyright: 4. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this study was to produce epoxy composites highly filled with waste bulk molding compounds (BMC). The used amount of filler ranged from 30 wt% to 60 wt%. The influence of BMC on the epoxy resin curing process was monitored with the differential scanning calorimetry (DSC) method. Fourier transform infrared (FTIR) spectroscopy was used to evaluate the chemical structure of composites. The mechanical and thermal properties were examined by means of dynamic mechanical thermal analysis (DMTA), the Charpy method and the Shore D test. The fracture surface morphology of composites was observed with scanning electron microscopy (SEM). The storage modulus G′ of the epoxy composites with BMC was higher than the reference epoxy sample and significantly dependent on filler content. All investigated materials showed similar values of hardness, but at the same time low values of impact strength. Therefore, obtained composites can be used as low cost coating materials.


Corresponding author: Danuta Matykiewicz, Polymer Processing Division, Institute of Materials Technology, Poznań University of Technology, Piotrowo 3, 61-138 Poznań, Poland, e-mail:

Acknowledgments

The study was realized under the project no. 02/25/DSMK0616, funded by the Polish Ministry of Science and Higher Education, to support research, development and related tasks which contribute to the progress of young researchers and PhD students.

References

[1] Witten E, Kraus T, Kühnel M. Composites Market Report 2014, Market developments, trends, challenges and opportunities 2–28, AVK-Federation of Reinforced Plastics.Suche in Google Scholar

[2] Melo JDD, Dos Santos EA. J. Reinf. Plast. Compos. 2009, 28, 2459–2471.10.1177/0731684408092376Suche in Google Scholar

[3] Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J. Polymer 2001, 42, 879–887.10.1016/S0032-3861(00)00392-XSuche in Google Scholar

[4] Pickering SJ. Compos. Part A 2006, 37, 1206–1215.10.1016/j.compositesa.2005.05.030Suche in Google Scholar

[5] Strzemięcka B, Héberger K, Voelkel A. J. Appl. Polym. Sci. 2013, 127, 3839–3847.10.1002/app.37695Suche in Google Scholar

[6] Jakubowska P, Kloziński A. Przem. Chem. 2013, 92, 757–760.Suche in Google Scholar

[7] Jacob A. Reinf. Plast. 2011, 55, 45–46.10.1016/S0034-3617(11)70079-0Suche in Google Scholar

[8] Petterson J, Nilsson P. J. Thermoplast. Compos. Mater. 1994, 7, 56–63.10.1177/089270579400700105Suche in Google Scholar

[9] Hedlund-Astrom A. Model for End of Life Treatment of Polymer Composite Materials. PhD Thesis, Royal Institute of Technology, Stockholm, 2005.Suche in Google Scholar

[10] DeRosa R, Telfeyan E. Mayes S. Expanding the use of Recycled SMC in BMCs. In: GPEC 2004 – Global Plastics Environmental Conference, 2004, Paper No. 044. Detroit, MI: Society of Plastics Engineers.Suche in Google Scholar

[11] Zaman AU, Gutub SA, Soliman MF, Wafa MA. J. Reinf. Plast. Compos. 2014, 33, 1069–1084.10.1177/0731684414521087Suche in Google Scholar

[12] Winter H, Mostert HAM, Smeets P, Paas G. J. Appl. Polym. Sci. 1995, 57, 1409–1417.10.1002/app.1995.070571116Suche in Google Scholar

[13] Vallee M, Tersac G, Destais-Orvoen N, Durand G. Ind. Eng. Chem. Res. 2004, 43, 6317–6324.10.1021/ie049871ySuche in Google Scholar

[14] Kouparitsas CE, Kawtalis CN, Varelidis PC, Tsenoglou CJ, Papaspyrides CD. Polymer 2002, 23, 682–689.10.1002/pc.10468Suche in Google Scholar

[15] Perrin D, Clerc L, Leroy E, Lopez-Cuesta JM, Bergeret A. Waste Manage. 2008, 28, 541–548.10.1016/j.wasman.2007.03.026Suche in Google Scholar

[16] Steenkamer DA, Sullivan JL. Polym. Compos. 1997, 18, 300–312.10.1002/pc.10283Suche in Google Scholar

[17] Błędzki AK, Kurek K, Barth Ch. Development of a Thermoset Part with SMC Reclaim. In: Proceedings of ANTEC’92 50 years: Plastics Shaping and the Future. Technical Papers, Detroit, MI: Soc. Plast. Eng., 1992, 50, 1558–1560.Suche in Google Scholar

[18] Paukszta D, Szostak M, Rogacz M. Polimery 2014, 59, 165–169.10.14314/polimery.2014.165Suche in Google Scholar

[19] Curcuras CN, Flax AM, Graham WD, Hartt GN. SAE Tech. Pap. Ser. 1991, 910387, p. 16.Suche in Google Scholar

[20] Ehrig RJ. Plastics Recycling: Products and Processes. Hanser Publishers, Munich, Germany, 1992. Ch 10, p. 232–261.Suche in Google Scholar

[21] Poulakis JG, Varelidis PC, Papaspyrides CD. Adv. Polym. Technol. 1997, 16, 313–322.10.1002/(SICI)1098-2329(199711)16:4<313::AID-ADV5>3.0.CO;2-YSuche in Google Scholar

[22] Razak SIA, Rahman WAWA, Yahya MY. J. Compos. Mater. 2014, 48, 667–676.10.1177/0021998313476527Suche in Google Scholar

[23] Razak SIA, Rahman WAWA, Yahya MY. J. Polym. Eng. 2013, 33, 565–577.10.1515/polyeng-2012-0152Suche in Google Scholar

[24] Dieu TV, Liem NT, Mai TT, Tung NH. JSME Int. J. Ser. A 2004, 47, 570–573.10.1299/jsmea.47.570Suche in Google Scholar

[25] Jansen KMB, Wang L, van’t Hof’ C, Ernst LJ, Bressers HJL, Zhang GQ. Cure, temperature and time dependent constitutive modeling of moulding compounds. In: Proceedings of the 5th International Conference EuroSimE 2004: Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems IEEE 2004, ISBN 0-7803-8420-2, p. 581–585.10.1109/ESIME.2004.1304095Suche in Google Scholar

[26] Lu Y, Broughton J, Winfield P. Int. J. Adhes. Adhes. 2014, 50, 119–127.10.1016/j.ijadhadh.2014.01.021Suche in Google Scholar

[27] Chaowasakoo T, Sombatsompop N. Compos. Sci. Tech. 2007, 67, 2282–2291.10.1016/j.compscitech.2007.01.016Suche in Google Scholar

[28] Bilyeu B, Brostow W, Menard KP. J. Mater. Ed. 1999, 21, 281.Suche in Google Scholar

[29] Bilyeu B, Brostow W, Menard KP. J. Mater. Ed. 2000, 22, 107.Suche in Google Scholar

[30] Chollet M, Horgnies M. Surf. Interface Anal. 2011, 43, 714–725.10.1002/sia.3548Suche in Google Scholar

[31] Hepburna DM, Kempa IJ, Cooperb JM. Polym. Degrad. Stab. 2000, 70, 245–251.Suche in Google Scholar

[32] Chmielewska D, Pacyna M, Sterzyński T. Przem. Chem. 2014, 93, 90–92.Suche in Google Scholar

[33] Pellice SA, Fasce DP, Williams RJJ. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 1451–1461.10.1002/polb.10494Suche in Google Scholar

[34] Brostow W, Hagg Lobland HE, Narkis M. J. Mater. Res. 2006, 21, 2422–2428.10.1557/jmr.2006.0300Suche in Google Scholar

[35] Menard KP. In Performance of Plastics, Brostow, W, Ed., Hanser: Munich – Cincinnati, 2000.Suche in Google Scholar

[36] Menard KP. Dynamic Mechanical Analysis – An Introduction, 2nd ed., CRC Press: Boca Raton, FL, 2008.Suche in Google Scholar

[37] Kalogeras IM. Hagg Lobland HE. J. Mater. Ed. 2012, 34, 69–94.Suche in Google Scholar

[38] Sudheer M, Prabhu R, Raju K, Bhat T. Adv. Mater. Sci. Eng. 2014, Article ID 970468, 11.10.1155/2014/970468Suche in Google Scholar

[39] Vasconcelos PV, Lino FJ, Magalhães A, Neto RJL. J. Mater. Process. Technol. 2005, 170, 277–283.10.1016/j.jmatprotec.2005.05.006Suche in Google Scholar

[40] Devendra K, Rangaswamy T. J. Miner. Mater. Character. Eng. 2013, 1, 353–357.10.4236/jmmce.2013.16054Suche in Google Scholar

[41] Suresha B, Kumar BNR, Venkataramareddy M. Mater. Des. 2010, 31, 1993–2000.10.1016/j.matdes.2009.10.031Suche in Google Scholar

Received: 2014-11-6
Accepted: 2015-2-20
Published Online: 2015-4-4
Published in Print: 2015-10-1

©2015 by De Gruyter

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2014-0330/pdf
Button zum nach oben scrollen