Abstract
This article deals with the electrical conductivity of a composite of two polymers, one of which is a conducting polymer, whereas the second is a dielectric. The problem was formulated within the framework of electrical percolation, i.e., the percolation thresholds, which allow for a high electrical conductivity, is under investigation. For this purpose, a numerical model was developed, and its parameters were analyzed and discussed. Based on the determined thresholds, it was possible to evaluate the weight ratios of the conducting-dielectric polymers in a composite. The proposed approach allows for reducing the manufacturing cost of composite material with respect to conducting polymers with simultaneous retaining of high conductance properties of conducting polymers, as well as durability and flexibility of dielectrics.
Acknowledgments
AK acknowledges a possibility of carrying out computations on the supercomputer IBM BladeCenter HS21 in the Academic Computer Centre CYFRONET AGH under the computational Grant No. MNiSW/IBM_BC_HS21/PŚląska/012/2013. KK is grateful to the National Science Centre in Poland for financing the research in the framework of PRELUDIUM (2012/07/N/ST5/01878).
References
[1] Flory PJ. J. Am. Chem. Soc. 1941, 63, 3083–3090.10.1021/ja01856a061Suche in Google Scholar
[2] Flory PJ. J. Am. Chem. Soc. 1941, 63, 3091–3096.10.1021/ja01856a062Suche in Google Scholar
[3] Flory PJ. J. Am. Chem. Soc. 1941, 63, 3096–3100.10.1021/ja01856a063Suche in Google Scholar
[4] Stockmayer WH. J. Chem. Phys. 1943, 11, 45–55.10.1063/1.1723803Suche in Google Scholar
[5] Broadbent SK, Hammersley JM. Proc. Camb. Phil. Soc. 1957, 53, 629–641.10.1017/S0305004100032680Suche in Google Scholar
[6] Tarasevich YY. Percolation: Theory, Applications, Algorithms, Editorial URSS Press: Moscow, 2002 (in Russian).Suche in Google Scholar
[7] Mészáros C, Farkas I, Bálint Á. Math. Comput. Simulat. 2001, 56, 395–404.10.1016/S0378-4754(01)00310-XSuche in Google Scholar
[8] Wang XH, Liu ZF, Wu QS, Li B. Phys. A 2002, 311, 320–326.10.1016/S0378-4371(02)00838-5Suche in Google Scholar
[9] Karaoulanis D, Xanthakis JP, Papatriantafillou C. J. Magn. Magn. Mater. 1996, 161, 231–234.10.1016/S0304-8853(96)00028-5Suche in Google Scholar
[10] Voronkov EN, Popov AI, Savinov IS, Fairushin AR. J. Non-Cryst. Solids 2006, 352, 1578–1581.10.1016/j.jnoncrysol.2005.11.078Suche in Google Scholar
[11] dos Santos CB, Barbin D, Caliri A. Phys. Lett. A. 1998, 238, 54–58.10.1016/S0375-9601(97)00889-XSuche in Google Scholar
[12] González MC, Herrmann HJ, Aráujo AD. Phys. A 2005, 356, 100–106.10.1016/j.physa.2005.05.020Suche in Google Scholar
[13] Bauer W. Phys. Rev. C 1988, 38, 1297–1303.10.1103/PhysRevC.38.1297Suche in Google Scholar
[14] Lucchin F. Prog. Part. Nucl. Phys. 1986, 17, 153–171.10.1016/0146-6410(86)90016-5Suche in Google Scholar
[15] Deng XF, He JZ, Peng J, Tang XX, Luo CH. Astropart. Phys. 2008, 30, 113–116.10.1016/j.astropartphys.2008.08.001Suche in Google Scholar
[16] Pike GE, Seager CH. Phys. Rev. B 1974, 10, 1421–1434.10.1103/PhysRevB.10.1421Suche in Google Scholar
[17] Seager CH, Pike GE. Phys. Rev. B 1974, 10, 1435–1446.10.1103/PhysRevB.10.1435Suche in Google Scholar
[18] Wessling B, Volk H. Synthetic Met. 1986, 15, 183–193.10.1016/0379-6779(86)90022-6Suche in Google Scholar
[19] Wessling B, Volk H. Synthetic Met. 1986, 16, 127–131.10.1016/0379-6779(86)90162-1Suche in Google Scholar
[20] Wessling B. In Electronic Properties of Conjugated Polymers, Kuzmany H, Mehring M, Roth S, Eds., Springer Ser. Solid State Sci. Springer: New York, 1987, Vol. 76, p 407–412.10.1007/978-3-642-83284-0_75Suche in Google Scholar
[21] Vysotsky VV, Roldughin VI. Colloid Surf. A 1999, 160, 171–180.10.1016/S0927-7757(99)00355-6Suche in Google Scholar
[22] Roldughin VI, Vysotsky VV. Prog. Org. Coat. 2000, 39, 81–100.10.1016/S0300-9440(00)00140-5Suche in Google Scholar
[23] Dorfman BF. Thin Solid Films 1998, 330, 76–82.10.1016/S0040-6090(98)00548-3Suche in Google Scholar
[24] Xue Q. Eur. Polym. J. 2004, 40, 323–327.10.1016/j.eurpolymj.2003.10.011Suche in Google Scholar
[25] Mamunya YP, Davydenko VV, Pissis P, Lebedev EV. Eur. Polym. J. 2002, 38, 1887–1897.10.1016/S0014-3057(02)00064-2Suche in Google Scholar
[26] Vilčáková J, Sáha P, Quadrat O. Eur. Polym. J. 2002, 38, 2343–2347.10.1016/S0014-3057(02)00145-3Suche in Google Scholar
[27] Bauhofer W, Kovacs JZ. Compos. Sci. Technol. 2009, 69, 1486–1498.10.1016/j.compscitech.2008.06.018Suche in Google Scholar
[28] Lux F. J. Mater. Sci. 1993, 28, 285–301.10.1007/BF00357799Suche in Google Scholar
[29] van der Marck SC. Phys. Rev. E 1997, 55, 1514–1517.10.1103/PhysRevE.55.1514Suche in Google Scholar
[30] Kurzawski Ł, Malarz K. Rep. Math. Phys. 2012, 70, 163–169.10.1016/S0034-4877(12)60036-6Suche in Google Scholar
[31] Tran J, Yoo T, Stahlheber S, Small A. J. Stat. Mech. 2013, 2013, 1–18.10.1088/1742-5468/2013/05/P05014Suche in Google Scholar
[32] van der Marck SC. Int. J. Mod. Phys. C 1998, 9, 529–540.10.1142/S0129183198000431Suche in Google Scholar
[33] Babalievski F. Phys. A 1995, 220, 245–250.10.1016/0378-4371(95)00260-ESuche in Google Scholar
[34] Shida K, Sahara R, Tripathi MN, Mizuseki H, Kawazoe Y. Mater. Trans. 2010, 51, 771–774.10.2320/matertrans.M2009329Suche in Google Scholar
[35] Hunt A. Percolation Theory for Flow in Porous Media, Springer: New York, 2005.Suche in Google Scholar
[36] Meester R, Roy R. Continuum Percolation: Cambridge Tracts in Mathematics, Cambridge University Press: New York, 1996, 119.10.1017/CBO9780511895357Suche in Google Scholar
[37] Sornette D. J. Phys. France 1988, 49, 889–896.10.1051/jphys:01988004906088900Suche in Google Scholar
[38] Qiao R, Brinson C. Compos. Sci. Technol. 2009, 69, 491–499.10.1016/j.compscitech.2008.11.022Suche in Google Scholar
[39] Franceschetti M, Meester R. Random Networks for Communication: From Statistical Physics to Information Systems, Cambridge University Press: New York, 2007, p 24.10.1017/CBO9780511619632Suche in Google Scholar
[40] Belashi A. Percolation Modeling in Polymer Nanocomposites, PhD, University of Toledo: Toledo, OH, 2011.Suche in Google Scholar
[41] Stoyan D, Kendall WS, Mecke J, Ruschendorf L. Stochastic Geometry and its Applications, Wiley: Chichester, UK, 1995.Suche in Google Scholar
[42] Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580.10.1039/c39770000578Suche in Google Scholar
[43] Scott JC. Science 1997, 278, 2071–2072.10.1126/science.278.5346.2071Suche in Google Scholar
[44] Matoetoe, MC. Mater. Sci. Forum 2010, 657, 208–230.10.4028/www.scientific.net/MSF.657.208Suche in Google Scholar
[45] Kim, WH, Mäkinen, AJ, Nikolov, N, Shashidhar, R, Kim, H, Kafafi, ZH. Appl. Phys. Lett. 2002, 80, 3844–3846.10.1063/1.1480100Suche in Google Scholar
[46] Padilla J, Otero TF. Bioinsp. Biomim. 2008, 3, 5006–5013.10.1088/1748-3182/3/3/035006Suche in Google Scholar
[47] Mastragostino, M, Arbizzani, C, Soavi, F. Solid State Ionics 2002, 148, 493–498.10.1016/S0167-2738(02)00093-0Suche in Google Scholar
[48] Madden, JDW, Madden, PGA, Hunter, IW. Proc. SPIE –The International Society for Optical Engineering 2002, 4695, 176–190.Suche in Google Scholar
[49] Craver CD, Carraher CE. Applied Polymer Science: 21st Century, Elsevier Science: Oxford, 2000.10.1016/B978-008043417-9/50004-0Suche in Google Scholar
[50] Kassim A, Basar ZB, Mahmud HNM. J. Chem. Sci. 2002, 114, 155–162.10.1007/BF02704308Suche in Google Scholar
[51] Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Biomaterials 2008, 29, 3393–3399.10.1016/j.biomaterials.2008.04.047Suche in Google Scholar PubMed
[52] Afzal AB, Akhtar MJ, Nadeem M, Hassan MM. Curr. Appl. Phys. 2010, 10, 601–606.10.1016/j.cap.2009.08.004Suche in Google Scholar
[53] Jousseaume V, Morsli M, Bonnet A, Lefrant S. Opt. Mater. 1998, 9, 484–488.10.1016/S0925-3467(97)00089-XSuche in Google Scholar
[54] Fattoum A, Gmati F, Bohli N, Arous M, Belhadj Mohamed A. J. Phys. D Appl. Phys. 2008, 41, 095407.10.1088/0022-3727/41/9/095407Suche in Google Scholar
[55] Gmati F, Fattoum A, Bohli N, Belhadj Mohamed A. J. Phys. Condens. Matter 2008, 20, 125221.10.1088/0953-8984/20/12/125221Suche in Google Scholar
[56] Derouiche H, Mohamed AB. Thin Solid Films 2012, 526, 274–277.10.1016/j.tsf.2012.10.117Suche in Google Scholar
[57] Oyharçabal M, Olinga T, Foulc MP, Vigneras V. Synth. Met. 2012, 162, 555–562.10.1016/j.synthmet.2012.02.011Suche in Google Scholar
[58] Subramaniam CK, Kaiser AB, Gillberd PW, Liu CJ, Wessling B. Solid State Commun. 1996, 97, 235–238.10.1016/0038-1098(95)00653-2Suche in Google Scholar
[59] Mandai TK, Mandai BM. Synth. Met. 1996, 80, 83–89.10.1016/0379-6779(96)80206-2Suche in Google Scholar
[60] Ilicheva NS, Kitaeva NK, Duflot VR, Kabanova VI. ISRN Polym. Sci. 2012, 2012, 320316.10.5402/2012/320316Suche in Google Scholar
[61] Zelikin N, Lynn D, Farhadi J, Martin I, Shastri V, Langer R. Angew. Chem. 2002, 41, 141–144.10.1002/1521-3773(20020104)41:1<141::AID-ANIE141>3.0.CO;2-VSuche in Google Scholar
[62] Sajesh KM, Jayakumar R, Nair V, Chennazhi KP. Int. J. Biol. Macromol. 2013, 62, 465–471.10.1016/j.ijbiomac.2013.09.028Suche in Google Scholar
[63] McQuade DT, Pullen AE, Swager TM. Chem. Rev. 2000, 100, 2537–2574.10.1021/cr9801014Suche in Google Scholar
[64] Sangermano M, Sordo F, Chiolerio A, Yagci Y. Polymer 2013, 54, 2077–2080.10.1016/j.polymer.2013.02.026Suche in Google Scholar
[65] Sankır M, Küçükyavuz Z, Küçükyavuz, S. J. Appl. Polym. Sci. 2003, 87, 2113–2119.10.1002/app.11504Suche in Google Scholar
[66] Vatansever F, Hacaloglu J, Akbulut U, Toppare L. Polym. Int. 1996, 41, 237–244.10.1002/(SICI)1097-0126(199611)41:3<237::AID-PI587>3.0.CO;2-0Suche in Google Scholar
[67] Pelster R, Nimtz G, Hessling B. J. Phys. II France 1994, 4, 549–553.10.1051/jp2:1994145Suche in Google Scholar
[68] Pelster R, Nimtz G, Hessling B. Phys. Rev. B 1994, 49, 12718–12723.10.1103/PhysRevB.49.12718Suche in Google Scholar
[69] Angappane S, Srinivasan D, Rangarajan G, Prasad V, Subramanyam SV, Wessling B. Phys. B 2000, 284–288, 1982–1983.10.1016/S0921-4526(99)02949-XSuche in Google Scholar
[70] Ángeles Correes M, Mugica A, Carrasco PM, Milagros Cortázar M. Polymer 2006, 47, 6759–6764.10.1016/j.polymer.2006.07.042Suche in Google Scholar
[71] Basavaraja C, Kim NR, Jo EA, Pierson R, Huh DS, Venkataraman A. B. Kor. Chem. Soc. 2009, 30, 2701–2706.Suche in Google Scholar
[72] Reedijk JA, Martens HCF, Brom HB. Phys. Rev. Lett. 1999, 83, 3904–3907.10.1103/PhysRevLett.83.3904Suche in Google Scholar
[73] Bhadra J, Sarkar D. B. Mater. Sci. 2010, 33, 519–523.10.1007/s12034-010-0079-8Suche in Google Scholar
[74] Kondawar SB, Deshpande MD, Agrawal SP. Int. J. Compos. Mater. 2012, 2, 32–36.10.5923/j.cmaterials.20120203.03Suche in Google Scholar
[75] Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C. Macromolecules 2003, 36, 9678–9680.10.1021/ma030399mSuche in Google Scholar
[76] Yu PY, Cardona M. Fundamentals of Semiconductors: Physics and MaterialProperties, Springer-Verlag: Berlin, 2010.10.1007/978-3-642-00710-1Suche in Google Scholar
[77] Aylward, G, Findlay, T. SI Chemical Data, 3rd ed., Wiley: New York, 1994.Suche in Google Scholar
[78] Smith A, Wilkinson SJ, Reynolds WN. J. Mater. Sci. 1974, 9, 547–550.10.1007/BF02387527Suche in Google Scholar
[79] O’Connor B, Chan EP, Chan C, Conrad BR, Richter LJ, Kline RJ, Heeney M, McCulloch I, Soles CL, DeLongchamp DM. ACS Nano 2012, 4, 7538–7544.10.1021/nn1018768Suche in Google Scholar PubMed
[80] Valentová H, Stejskal J. Synth. Met. 2010, 160, 832–834.10.1016/j.synthmet.2010.01.007Suche in Google Scholar
[81] Cassignol C, Cavarero M, Boudet A, Ricard A. Polymer 1999, 40, 1139–1151.10.1016/S0032-3861(98)00349-8Suche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Original articles
- Functionalization of polyolefin melts containing carbon nanotubes and the properties of their blends with polyamide 6
- Electrical percolation in composites of conducting polymers and dielectrics
- Tris(hydroxydietylene)-2-hydroxypropane-1,2,3-tricarboxylate for rigid PUR-PIR foams
- Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: analysis of the mechanical properties, morphology and thermal behavior
- Morphology of poly(3-hydroxybutyrate)–polyvinyl alcohol extrusion films
- Preparation and characteristics of polypropylene-clay nanocomposite fibers
- Poly(ethylene terephthalate)/poly(ethylene-co-vinyl alcohol) sheath-core fibers: preparation and characterization
- Effects of different starch types on the physico-mechanical and morphological properties of low density polyethylene composites
- Morphology and thermomechanical properties of epoxy composites highly filled with waste bulk molding compounds (BMC)
Artikel in diesem Heft
- Frontmatter
- Original articles
- Functionalization of polyolefin melts containing carbon nanotubes and the properties of their blends with polyamide 6
- Electrical percolation in composites of conducting polymers and dielectrics
- Tris(hydroxydietylene)-2-hydroxypropane-1,2,3-tricarboxylate for rigid PUR-PIR foams
- Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: analysis of the mechanical properties, morphology and thermal behavior
- Morphology of poly(3-hydroxybutyrate)–polyvinyl alcohol extrusion films
- Preparation and characteristics of polypropylene-clay nanocomposite fibers
- Poly(ethylene terephthalate)/poly(ethylene-co-vinyl alcohol) sheath-core fibers: preparation and characterization
- Effects of different starch types on the physico-mechanical and morphological properties of low density polyethylene composites
- Morphology and thermomechanical properties of epoxy composites highly filled with waste bulk molding compounds (BMC)