Home Post-irradiation effects on gamma-irradiated nylon 6,12 fibers
Article
Licensed
Unlicensed Requires Authentication

Post-irradiation effects on gamma-irradiated nylon 6,12 fibers

  • Carmina Menchaca-Campos EMAIL logo , Gonzalo Martínez-Barrera , Héctor López-Valdivia , Héctor Carrasco and Alberto Álvarez-Castillo
Published/Copyright: November 23, 2013
Become an author with De Gruyter Brill

Abstract

Post-irradiation effects on nylon 6,12 crystalline fibers gamma-irradiated 6 years previously (6YI) were studied, including thermal stability and morphology; their relationship with storage time was also studied. The results of these studies were compared with those obtained for non-irradiated (NI) and namely freshly irradiated (FI) crystalline fibers. The results include analyses like thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM) and optical images for (6YI and FI) both kinds of nylon 6,12 fibers. The results showed that the most prominent effect is related to the reaction progress. The chain scission and/or crosslinking mechanisms, as well as the free radicals, allow proceeding with the reaction, and consequently, changes on the properties of the FI samples. The melting point, degree of crystallinity, degradation temperature and morphology prove that additional chemical reactions and surface modifications keep occurring in the fibers long after the irradiation process has ended. With storage time, the surface becomes rougher, the color turns yellowish, the melting point diminishes and the degree of crystallinity increases.


Corresponding author: Carmina Menchaca-Campos, Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca Mor. Mexico, e-mail:

References

[1] Liu CK, Kokish M. Polym. Prepr. 1996, 37, 748–749.Search in Google Scholar

[2] Brostow W, Deshpande S, Fan K, Mahendrakar S, Pietkiewicz D, Wisner SR. Polym. Eng. Sci. 2009, 49, 1035–1041.Search in Google Scholar

[3] Menchaca C, Manoun B, Martínez-Barrera G, Castaño VM, López-Valdivia H. J. Phys. Chem. Solids 2006, 67, 2111–2118.10.1016/j.jpcs.2006.05.017Search in Google Scholar

[4] Martínez-Barrera G, Menchaca C, Pietkiewicz D, Brostow W. Mater. Sci. (Medziagotyra) 2004, 10, 166–172.Search in Google Scholar

[5] Martínez-Barrera G, Hernández-López S, Vigueras-Santiago E, Menchaca-Campos C, Brostow W. Polym. Eng. Sci. 2005, 45, 1426–1431.Search in Google Scholar

[6] Martínez-Barrera G, Vigueras-Santiago E, Hernández-López S, Menchaca-Campos C, Brostow W. J. Mater. Res. 2006, 21, 484–491.Search in Google Scholar

[7] Martínez-Barrera G, Menchaca-Campos C, Vigueras-Santiago E, Brostow W. e-Polym. 2010, 042, 1–14.Search in Google Scholar

[8] Olivares M, López-Valdivia H, Vázquez-Polo G, Carrasco H, Álvarez-Castillo A, Oliva E, Castaño VM. Polym. Bull. 1996, 36, 629–636.Search in Google Scholar

[9] Menchaca C, Álvarez-Castillo A, Martínez-Barrera G, López-Valdivia H, Carrasco H, Castaño VM. Int. J. Mater. Prod. Technol. 2003, 19, 521–529.Search in Google Scholar

[10] Menchaca-Campos C, Martínez-Barrera G, Fainleib A. J. Polym. Eng. 2011, 31, 457–461.Search in Google Scholar

[11] Menchaca C, Rejón L, Álvarez-Castillo A, Apátiga M, Castaño VM. Int. J. Polym. Mater. 2000, 48, 135–143.Search in Google Scholar

[12] Menchaca-Campos C, Martínez-Barrera G, Resendiz MC, Lara VH, Brostow W. J. Mater. Res. 2008, 23, 1276–1281.Search in Google Scholar

[13] Menchaca C, Demesa G, Santiaguillo A, Martínez-Barrera G, López-Valdivia H, Carrasco H, Uruchurtu J. J. Mater. Sci. Eng. B 2012, 2, 247–254.Search in Google Scholar

[14] Menchaca C, Álvarez-Castillo A, López-Valdivia H, Carrasco H, Lara VH, Bosch P, Castaño VM. Int. J. Polym. Mater. 2002, 51, 769–781.Search in Google Scholar

[15] Menchaca C, Nava JC, Valdéz S, Sarmiento-Martínez O, Uruchurtu J. J. Mater. Sci. Eng. 2010, 4, 50–58.Search in Google Scholar

[16] Ungar G. J. Mater. Sci. 1981, 16, 2635–2656.Search in Google Scholar

[17] Keller A, Ungar G. Radiat. Phys. Chem. 1983, 22, 155–181.Search in Google Scholar

[18] Li B, Zhang L. Polym. Degrad. Stab. 1997, 55, 17–20.Search in Google Scholar

[19] Luo Y, Wang G, Lu Y, Chen N, Jiang B. Radiat. Phys. Chem. 1985, 25, 359–365.Search in Google Scholar

[20] Timus DM, Cincu C, Bradley DA, Craciun G, Mateescu E. Appl. Radiat. Isot. 2000, 53, 937–944.Search in Google Scholar

[21] Bittner B, Mader K, Kroll C, Borchert HH, Kissel T. J. Controlled Release 1999, 59, 23–32.10.1016/S0168-3659(98)00170-9Search in Google Scholar

[22] Valenza A, Piccarolo S, Spadaro G. Polymer 1999, 40, 835–841.10.1016/S0032-3861(98)00294-8Search in Google Scholar

[23] Aytac A, Deniz V, Sen M, Hegazy ES, Guven O. Radiat. Phys. Chem. 2010, 79, 297–300.Search in Google Scholar

[24] Li B, Yu J, Zhang L, Liang Q. Polym. Int. 1996, 39, 295–302.Search in Google Scholar

[25] Zhang L, Zhang W, Zhang Z, Yu L, Zang H, Qi Y, Chen D. Radiat. Phys. Chem. 1992, 40, 501–505.Search in Google Scholar

[26] O’Neill P, Birkinshaw C, Leahy JJ, Barklie R. Polym. Degrad. Stab. 1999, 63, 31–39.Search in Google Scholar

[27] Malek MA, Renreng A, Chong CS. Radiat. Phys. Chem. 2001, 60, 603–607.Search in Google Scholar

Received: 2013-3-22
Accepted: 2013-10-5
Published Online: 2013-11-23
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0070/html?lang=en
Scroll to top button