Abstract
Jute fabrics reinforced polyethylene (PE), polyvinyl chloride (PVC) and laminates of alternate PE and PVC matrices-based composites (50 wt% fiber) were prepared by compression molding. The values of tensile strength (TS), bending strength (BS), impact strength (IS), tensile modulus (TM) and bending modulus (BM) of the 60% PE+40% PVC hybrid matrices-based composites were found to be 55.2 MPa, 59.4 MPa, 24.0 kJ/m2, 1.59 GPa and 1.72 GPa, respectively. Gamma radiation (2–8 kGy doses) was applied on PE, PVC and jute fabrics, and then composites were fabricated. The values of TS, BS, IS, TM and BM of the irradiated (4 kGy) composites were found to improve by 15, 18, 23, 13 and 12% over non-irradiated composites. Scanning electron microscopy (SEM), water uptake and soil degradation tests of untreated and treated composites were also investigated.
©2012 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Masthead
- Original Articles
- Evaluation of factors and kinetics study of polyacrylamide redox polymerization using statistical design modeling
- Gel filtration chromatography analysis and modeling the process of pullulan depolymerization
- Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization
- Viscoelasticity in thermoforming
- Melt extrudate swell behavior of polypropylene composites filled with hollow glass beads
- Viscosity and domain morphology in binary immiscible blends of poly(trimethylene terephthalate) and polyamide6,10
- Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites
- Fabrication and properties of poly(L-lactide)/hydroxyapatite/chitosan fiber ternary composite scaffolds for bone tissue engineering
- Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: mechanical, thermal and morphological properties
- Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites
- Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles
- Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites
Articles in the same Issue
- Masthead
- Masthead
- Masthead
- Original Articles
- Evaluation of factors and kinetics study of polyacrylamide redox polymerization using statistical design modeling
- Gel filtration chromatography analysis and modeling the process of pullulan depolymerization
- Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization
- Viscoelasticity in thermoforming
- Melt extrudate swell behavior of polypropylene composites filled with hollow glass beads
- Viscosity and domain morphology in binary immiscible blends of poly(trimethylene terephthalate) and polyamide6,10
- Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites
- Fabrication and properties of poly(L-lactide)/hydroxyapatite/chitosan fiber ternary composite scaffolds for bone tissue engineering
- Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: mechanical, thermal and morphological properties
- Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites
- Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles
- Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites