Microstructure and properties of Mg-Zn-Y-Nd-Zr alloy optimized by hot extrusion and solid solution
-
W. Qin
Li Zheng is an associate professor at the School of Materials Science and Engineering, Shenyang University of Technology. His research interests focus on high performance magnesium alloy materials and their molding process. He presided over the National Natural Science Foundation of China, Liaoning Provincial Doctoral Start-up Fund, and Liaoning Provincial Department of Education Basic Science Research Program.
Abstract
The microstructural evolution and tensile properties of Mg-4Zn-0.5Y-0.5Nd-0.3Zr alloy were studied after casting, hot extrusion, and solution treatment. The as-cast alloy features coarse grains and a semi-continuous skeletal W’ phase. Hot extrusion induces dynamic recrystallization, forming refined equiaxed grains and aligning fragmented second-phase particles along the extrusion direction (ED), significantly enhancing yield tensile strength (YTS), ultimate tensile strength, and elongation by 229 %, 119 %, and 50 %, respectively. Solution treatment (420–500 °C, 3–8 h) dissolves coarse phases, promotes fine precipitate formation, and causes grain coarsening. Optimal properties are achieved at 460 °C for 5 h, yielding a 32 % increase in YTS due to grain refinement, texture, solution, and precipitation strengthening.
Kurzfassung
Nach dem Gießen, Warmstrangpressen und Lösungsglühen wurde die Gefügeentwicklung und die Zugfestigkeit der Legierung Mg-4Zn-0,5Y-0,5Nd-0,3Zr untersucht. Die Legierung im Gusszustand ist durch grobe Körner und eine semi-kontinuierliche skelettartige W‘-Phase charakterisiert. Das Warmstrangpressen ruft eine dynamische Rekristallisation hervor, bei der gefeinte gleichachsige Körner gebildet und fragmentierte Partikel der Sekundärphase entlang der Extrusionsrichtung (ER) ausgerichtet werden, wodurch die Werte für YTS, UTS und Dehnung jeweils deutlich um 229 %, 119 % und 50 % steigen. Beim Lö-sungsglühen (420–500 °C, 3–8 h) kommt es zur Auflösung grober Phasen, zur Ausbildung feiner Ausscheidungen und einer Kornvergrö-berung. Durch Kornfeinung, Textur- und Mischkristallverfestigung sowie Ausscheidungshärtung werden bei 460 °C mit einer Haltezeit von 5 h mit einer 32 %igen Erhöhung der YTS optimale Eigenschaften erzielt.
About the author
Li Zheng is an associate professor at the School of Materials Science and Engineering, Shenyang University of Technology. His research interests focus on high performance magnesium alloy materials and their molding process. He presided over the National Natural Science Foundation of China, Liaoning Provincial Doctoral Start-up Fund, and Liaoning Provincial Department of Education Basic Science Research Program.
References / Literatur
[1] Meysam, H.: Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. Journal of Magnesium and Alloys 5 (2017) 2, pp. 189–201. DOI:10.1016/j.jma.2017.05.00110.1016/j.jma.2017.05.001Search in Google Scholar
[2] Abd-Elaziem, W.; Darwish, M. A.; Hamada, A. et al.: Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review [J]. Materials & Design (2024), p. 241. DOI:10.1016/j.matdes.2024.11285010.1016/j.matdes.2024.112850Search in Google Scholar
[3] Radha, R; Sreekanth, D: Insight of magnesium alloys and composites for orthopedic implant applications a review[J]. Journal of Magnesium and Alloys 5 (2017) 3, pp. 286–312. DOI:10.1016/j.jma.2017.08.00310.1016/j.jma.2017.08.003Search in Google Scholar
[4] Uhrig, B. A.; Clements, I. P.; Boerckel, J. D. et al.: Characterization of a composite injury model of severe lower limb bone and nerve trauma [J]. J Tissue Eng Regen Med 8 (2014) 6, pp. 432–441. DOI:10.1002/term.153710.1002/term.1537Search in Google Scholar PubMed
[5] Han, X. Z.; Xu, W. C.; Shan, D. B.: Effect of precipitates on microstructures and properties of forged Mg-10Gd-2Y-0.5Zn-0.3Zr alloy during ageing process [J]. Journal of alloys and compounds 509 (2011) 35, pp. 8625–8631. DOI:10.1016/j.jallcom.2011.06.08610.1016/j.jallcom.2011.06.086Search in Google Scholar
[6] Guo, S.; Liu, Z.; Bai, S. et al.: Effect of rolling temperature on mechanical properties and corrosion resistance of Al-Cu-Mg-Ag alloy [J]. Journal of Alloys and Compounds 897 (2022), pp. 163–168. DOI:10.1016/j.jallcom.2021.16316810.1016/j.jallcom.2021.163168Search in Google Scholar
[7] Zhang, X.; Cao, Z.: Effects of pulse shaping on Nd: YAG laser spot welds in an AZ31 magnesium alloy [J]. Optics and Lasers in Engineering (2019) 119, pp. 1–8. DOI:10.1016/j.optlaseng.2019.02.00210.1016/j.optlaseng.2019.02.002Search in Google Scholar
[8] Zhou, W.; Shen, T..; Aung, N. N.: Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid [J]. Corrosion Science 52 (2010) 3, p. 0-1041. DOI:10.1016/j.corsci.2009.11.03010.1016/j.corsci.2009.11.030Search in Google Scholar
[9] Hou, X.; Qin, H.; Gao, H. et al.: A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification [J]. Materials Science and Engineering C (2017), S092849311731130X. DOI:10.1016/j.msec.2017.04.12810.1016/j.msec.2017.04.128Search in Google Scholar PubMed
[10] Diez, M.; Kang, M. H.; Kim, S. M. et al.: Hydroxyapatite (HA) / poly-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications [J]. Journal of Materials Science Materials in Medicine 27 (2016) , pp. 27–34. DOI:10.1007/s10856-015-5643-810.1007/s10856-015-5643-8Search in Google Scholar PubMed
[11] Zhang, J.; Chen, B.; Liu, C.: An investigation of dynamic recrystallization behavior of ZK60-Er magnesium alloy [J]. Materials Science and Engineering A 612 (2014), pp. 253–266. DOI:10.1016/j.msea.2014.06.05810.1016/j.msea.2014.06.058Search in Google Scholar
[12] Sun, M.; Wu, G.; Wang, W. et al.: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Materials Science And Engineering A 523 (2009) 1–2, pp. 145–151. DOI:10.1016/j.msea.2009.06.00210.1016/j.msea.2009.06.002Search in Google Scholar
[13] Brar, H. S.; Wong, J.; Manuel, M. V.: Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials [J]. J Mech Behav Biomed Mater 7 (2012) 3, pp. 87–95. DOI:10.1016/j.jmbbm.2011.07.01810.1016/j.jmbbm.2011.07.018Search in Google Scholar PubMed
[14] Zhang, S.; Zhang, X.; Zhao, C. et al.: Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomaterialia 6 (2010) 2, pp. 626–640. DOI:10.1016/j.actbio.2009.06.02810.1016/j.actbio.2009.06.028Search in Google Scholar PubMed
[15] Ji, H.; Liu, W.; Wu, G.; Ouyang, S.; Gao, Z.; Peng, X.; Ding, W.: Influence of Er addition on microstructure and mechanical properties of as-cast Mg-10Li-5Zn alloy. Mater. Sci. Eng. A 739 (2019), pp. 395–403. DOI:10.1016/j.msea.2018.10.04210.1016/j.msea.2018.10.042Search in Google Scholar
[16] Lyu, J.; Kim, J.; Liao, H.; She, J.; Song, J.; Peng, J.; Pan, F.; Jiang, B.: Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg–Y–Zn alloys. Mater. Sci. Eng. A 773 (2020), Article 138735. DOI:10.1016/j.msea.2019.13873510.1016/j.msea.2019.138735Search in Google Scholar
[17] Zeng, Z.; Stanford, N;. Davies, C. H. J. et al. Magnesium extrusion alloys: a review of developments and prospects [J]. Taylor & Francis 1 (2019). DOI:10.1080/09506608.2017.142143910.1080/09506608.2017.1421439Search in Google Scholar
[18] Jiang, H.; Qiao, X.; Xu, C. et al.: Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion [J]. Journal of Materials Science & Technology 34 (2018) 2, pp. 277–283. DOI:10.1016/j.jmst.2017.11.02210.1016/j.jmst.2017.11.022Search in Google Scholar
[19] Hongna, Q. I.; Zhimin, Z.; Jianmin, Y. U., et al.: Dynamic recrystallization of Mg-13Gd-4Y-2Zn-0.5Zr alloy during hot compression [J]. Ordnance Material Science and Engineering (2016).Search in Google Scholar
[20] Xie, J.; Zhang, Z.; Liu, S. et al.: Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion [J]. International Journal of Minerals, Metallurgy and Materials 30 (2023) 1, pp. 82–91. DOI:10.1007/s12613-022-2472-x10.1007/s12613-022-2472-xSearch in Google Scholar
[21] Wang, J.; Liu, R.; Dong, X.; Yang, Y.: Microstructure and mechanical properties of Mg-Zn-Y-Nd-Zr alloys. Journal of Rare Earths 31 (2013), pp. 616–621. DOI:10.1016/S1002-0721(12)60330-510.1016/S1002-0721(12)60330-5Search in Google Scholar
[22] Feng, S.; Zhang, W.; Zhang, Y.; Guan, J.; Xu, Y.: Microstructure, mechanical properties and damping capacity of heat-treated Mg-Zn-Y-Nd-Zr alloy. Mater. Sci. Eng. A 609 (2014), pp. 283–292. DOI:10.1016/j.msea.2014.05.01910.1016/j.msea.2014.05.019Search in Google Scholar
[23] Wang, Y. B.; Huang, Y. X.; Meng, X. C. et al.: Journal of Alloys and Compounds [J] 696 (2017); p. 875. DOI:10.1016/j.jallcom.2016.12.06810.1016/j.jallcom.2016.12.068Search in Google Scholar
[24] Li, C. Q.; Xu, D. K.; Zeng, Z. R. et al.: Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Materials and Design [J] 121 (2017), p. 430. DOI:10.1016/j.matdes.2017.02.07810.1016/j.matdes.2017.02.078Search in Google Scholar
[25] Robson, J. D.; Twier, A. M.; Lorimer, G. W. et al.: Effect of extrusion conditions on microstructure, texture, and yield asymmetry in Mg-6Y-7Gd-0.5 wt%Zr alloy [J]. Materials Science & Engineering A 528 (2011) 24, pp. 7247–7256. DOI:10.1016/j.msea.2011.05.07510.1016/j.msea.2011.05.075Search in Google Scholar
[26] Alizadeh, R.; Mahmudi, R.; Ngan, A. H. W.; Langdon T. G.: An Unusual Extrusion Texture in Mg–Gd–Y–Zr Alloys. Adv. Eng. Mater. 18 (2016), pp. 1044–1049. DOI:10.1002/adem.20150051610.1002/adem.201500516Search in Google Scholar
[27] Xu, C.; Nakata, T.; Qiao, X, G, et al.: Effect of extrusion parameters on microstructure and mechanical properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt%) alloy [J]. Materials Science and Engineering A 685 (2017), pp. 159–167. DOI:10.1016/j.msea.2016.12.12110.1016/j.msea.2016.12.121Search in Google Scholar
[28] Yu, Z.; Huang, Y.; Gan, W. et al.: Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt%) alloy [J]. Journal of Materials Science 52 (2017) 11, pp. 6670–6686. DOI:10.1007/s10853-017-0902-310.1007/s10853-017-0902-3Search in Google Scholar
[29] Xueze, J.; Wenchen, X.; Zhongze, Y. et al.: Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J] 45 (2020), 133–145. DOI:10.1016/j.jmst.2019.11.02110.1016/j.jmst.2019.11.021Search in Google Scholar
[30] Kwak, T. Y.; Kim, W. J.: Mechanical properties and Hall-Petch relationship of the extruded Mg-Zn-Y alloys with different volume fractions of icosahedral phase [J]. Journal of Alloys and Compounds 770 (2019), pp. 589–599. DOI:10.1016/j.jallcom.2018.08.12110.1016/j.jallcom.2018.08.121Search in Google Scholar
[31] Zengin, H.; Turen, Y.; Ahlatci, H. et al.: Mechanical properties and corrosion behavior of As-Cast Mg-Zn-Zr-(La) magnesium alloys [J]. Journal of Materials Engineering and Performance 27 (2018) 2, pp. 389–397. DOI:10.1007/s11665-017-3112-x10.1007/s11665-017-3112-xSearch in Google Scholar
[32] Agnew, S. R.; Duygulu, Ö.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plasticity 21 (2005), pp. 1161–1193. DOI:10.1016/j.ijplas.2004.05.01810.1016/j.ijplas.2004.05.018Search in Google Scholar
[33] Kacher, J.; Minor, A. M.: Twin boundary interactions with grain boundaries investigated in pure rhenium. Acta Mater. 81 (2014), pp. 1–8. DOI:10.1016/j.actamat.2014.08.01310.1016/j.actamat.2014.08.013Search in Google Scholar
[34] Zhang, J.; Chen, B.; Liu, C.: An investigation of dynamic recrystallization behavior of ZK60-Er magnesium alloy. Mater. Sci. Eng. A 612 (2014), pp. 253–266. DOI:10.1016/j.msea.2014.06.05810.1016/j.msea.2014.06.058Search in Google Scholar
[35] Valle, J. A. D.; Ruano, O. A.: Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy. Mater. Sci. Eng. A 487 (2008.), pp. 473–480. DOI:10.1016/j.msea.2007.11.02410.1016/j.msea.2007.11.024Search in Google Scholar
[36] Sheng, L. Y.; Du, B. N.; Wang, B. J.; Xu, D. K.; Lai, C.; Gao, Y.; Xi, T. F.: Hot Extrusion Effect on the Microstructure and Mechanical Properties of a Mg-Y-Nd-Zr Alloy. Strength Mater. 50 (2018) 1, pp. 184–192. DOI:10.1007/s11223-018-9958-910.1007/s11223-018-9958-9Search in Google Scholar
[37] Galiyev, A.; Kaibyshev, R.; Gottstein, G.: Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49 (2001), pp. 1199–1207. DOI:10.1016/S1359-6454(01)00020-910.1016/S1359-6454(01)00020-9Search in Google Scholar
[38] Jiang, P.; Blawert, C.; Zheludkevich, M. L.: The Corrosion Performance and Mechanical Properties of Mg-Zn Based Alloys-A Review [J].Corrosion and Materials Degradation 1 (2020 ) 1, p. 7. DOI:10.3390/cmd102000710.3390/cmd1020007Search in Google Scholar
[39] Korgiopoulos, K.; Pekguleryuz, M.: The effect of Y on the microstructure and mechanical performance of an Mg-Al-Y casting alloy [J]. Experimental Results (2021). DOI:10.1017/exp.2020.6310.1017/exp.2020.63Search in Google Scholar
[40] Guan, K.; Zhang, J. H.; Yang, Q.; Li, B. S.; Wu, R. Z.; Meng, J.: Effects of trace Ca addition on microstructure and mechanical properties of as-cast Mg-Sm-Gd-based alloy [J]. Transactions of Nonferrous Metals Society of China 33 (2023) 1, pp. 46–58. DOI:10.1016/S1003-6326(22)66089-810.1016/S1003-6326(22)66089-8Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Heat treatment of copper-beryllium alloy C17000 to form microstructure with high mechanical properties
- Microstructure and properties of Mg-Zn-Y-Nd-Zr alloy optimized by hot extrusion and solid solution
- Effects of modes of metal transfer on microstructure of welded duplex stainless steel samples
- Failure Analysis
- Determining the root cause of failure – calling a spade a spade – overload failures of tack strips for instrumentation wiring
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Heat treatment of copper-beryllium alloy C17000 to form microstructure with high mechanical properties
- Microstructure and properties of Mg-Zn-Y-Nd-Zr alloy optimized by hot extrusion and solid solution
- Effects of modes of metal transfer on microstructure of welded duplex stainless steel samples
- Failure Analysis
- Determining the root cause of failure – calling a spade a spade – overload failures of tack strips for instrumentation wiring
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary