Home Technology Development of an automated 3D metallography system and some first application examples in microstructural analysis
Article
Licensed
Unlicensed Requires Authentication

Development of an automated 3D metallography system and some first application examples in microstructural analysis

  • A. Lemiasheuski

    (born in 1992) graduated in mechanical engineering at HTW (Hochschule für Technik und Wirtschaft) Berlin in 2023 and start his PhD in the same year. Since 2023 he is an employee at HTW Berlin and do his research at BAM (Bundesanstalt für materialforschung und -prüfung) in 3D-metallography.

    , E. Bajer , G. Oder , A. Göbel , R. Hesse , A. Pfennig and D. Bettge

    (born in 1967) graduated in Material Science at TU Berlin in 1991 and received his PhD in 1997. Since 2001 he is an employee at BAM (Bundesanstalt für materialforschung und -prüfung) and has specialised in metallography, fractography, and failure analysis.

Published/Copyright: September 14, 2023
Become an author with De Gruyter Brill

Abstract

Traditional metallography relies on the imaging of individual section planes. However, conclusions as to spatial shapes and microstructural arrangements can only be drawn to a limited extent. The idea to reconstruct three-dimensional microstructures from metallographic serial sections is therefore obvious and not at all new. However, the manual process of preparing a great number of individual sections and assembling them into image stacks is time-consuming and laborious and therefore constitutes an obstacle to frequent use. This is why the Federal Institute for Materials Research and Testing, or BAM for short (Bundesanstalt für Materialforschung und -prüfung), is developing a robot-assisted 3D metallography system performing the tasks of preparation and image acquisition on a metallographic section fully automatically and repeatedly. Preparation includes grinding, polishing and optional etching of the section surface. Image acquisition is performed using a light optical microscope with autofocus at several magnification levels. The obtained image stack is then pre-processed, segmented and converted to a 3D model resembling a microtomographic image, but with a higher lateral resolution at large volumes. As opposed to tomographic techniques, it is possible to perform traditional chemical etching for contrasting. The integration of a scanning electron microscope is in the planning stages. Studies conducted so far have demonstrated the possibility of visualizing hot gas corrosion layers, gray cast irons and ceramic-based microelectronic structures (vias).

Kurzfassung

Die klassische Metallographie basiert auf Abbildungen einzelner Schliffebenen und kann auf räumliche Formen und Anordnungen des Gefüges nur bedingt schließen. Die Idee, aus metallographischen Serienschliffen dreidimensionale Gefügestrukturen zu rekonstruieren, ist daher naheliegend und nicht neu. Allerdings ist der Aufwand, in Handarbeit viele Einzel-Schliffe zu präparieren und zu Bildstapeln zusammenzusetzen, sehr hoch und steht einer häufigen Anwendung entgegen. Deshalb wird an der BAM ein Roboter-gestütztes 3D-Metallographie-System entwickelt, das an einer Schliffprobe die Schritte Präparation und Bildeinzug vollautomatisch mit vielen Wiederholungen ausführt. Die Präparation umfasst Schleifen, Polieren und optional Ätzen der Schlifffläche, der Bildeinzug autofokussierte lichtmikroskopische Aufnahmen bei mehreren Vergrößerungsstufen. Der erhaltene Bildstapel wird anschließend vorverarbeitet, segmentiert und in ein 3D-Modell umgesetzt, das einer mikrotomographischen Aufnahme ähnelt, allerdings mit besserer lateraler Auflösung bei großem Volumen. Im Gegensatz zu tomographischen Verfahren besteht die Möglichkeit der Kontrastierung durch klassische chemische Ätzung. Die Integration eines REMs ist geplant. Bislang durchgeführte Arbeiten verdeutlichen die Möglichkeiten der Darstellung von HeißgasKorrosionsschichten, Grauguss-Werkstoffen und Keramik-basierten mikroelektronischen Strukturen (Vias).

About the authors

A. Lemiasheuski

(born in 1992) graduated in mechanical engineering at HTW (Hochschule für Technik und Wirtschaft) Berlin in 2023 and start his PhD in the same year. Since 2023 he is an employee at HTW Berlin and do his research at BAM (Bundesanstalt für materialforschung und -prüfung) in 3D-metallography.

D. Bettge

(born in 1967) graduated in Material Science at TU Berlin in 1991 and received his PhD in 1997. Since 2001 he is an employee at BAM (Bundesanstalt für materialforschung und -prüfung) and has specialised in metallography, fractography, and failure analysis.

5 Acknowledgements

The authors would like to deeply thank Axel Kranzmann for initiating and advancing the project. Srinivasan Swaminathan is acknowledged for providing inspiration for a name.

5 Danksagung

Hiermit wird Axel Kranzmann ein großer Dank für das Starten und Voranbringen des Projekts ausgesprochen, Srinivasan Swaminathan danken wir für die Inspiration zur Namensfindung.

References / Literatur

[1] Ganti, A.; Geier, B.; Turner, B. J.; Jenkins, E. J.; Velez, M. A.; Hayes, B.: A Comparison of Porosity Analysis Using 2D Stereology Estimates and 3D Serial Sectioning for Additively Manufactured Ti 6Al 2Sn 4Zr 2Mo Alloy, Pract. Metallogr. 54 (2017) 2, pp. 77–92. DOI:10.3139/147.11043210.3139/147.110432Search in Google Scholar

[2] Tsai, S. P.; Konijnenberg, P. J.; Gonzalez, I.: Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume threedimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel, Rev. Sci. Instrum. 93, 093707 (2022). DOI:10.1063/5.008794510.1063/5.0087945Search in Google Scholar PubMed

[3] Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J. E.; Schneider, K.; Soyarslan, C.; Wilmers, J.: Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science (2018), pp. 322–384. DOI:10.1016/j.pmatsci.2018.02.00310.1016/j.pmatsci.2018.02.003Search in Google Scholar

[4] Uchic, M. D.; Holzer, L.; Inkson, B. J.; Principe, E. L.; Munroe, P: Three Dimensional Microstructural Characterization Using Focused Ion Beam Tomography, MRS Bulletin Volumen 32 (2007), pp. 408–416. DOI:10.1557/mrs2007.6410.1557/mrs2007.64Search in Google Scholar

[5] Spowart, J. E.: Automated serial sectioning for 3-D analysis of microstructures, Scpripta Materialia 55 (2006), pp. 5–10. DOI:10.1016/j.scriptamat.2006.01.01910.1016/j.scriptamat.2006.01.019Search in Google Scholar

[6] Alkemper, J.; Voorhees, P. W.: Quantitative serial sectioning analysis, Journal of Microscopy, Vol. 201, Pt 3 (2001), pp. 388–394. DOI:10.1046/j.1365-2818.2001.00832.x10.1046/j.1365-2818.2001.00832.xSearch in Google Scholar PubMed

[7] Jolley, B. R.; Uchic, M. D.; Sparkman, D.; Chapman, M.; Schwalbach, E. J.: Application of Serial Sectioning to Evaluate the Performance of x-ray Computed Tomography for Quantitative Porosity Measurements in Additively Manufactured Metals, Advances in Multimodal Characterization of Structural Materials, Vol. 73, No. 11 (2021), pp. 3230–3239. DOI:10.1007/s11837-021-04863-z10.1007/s11837-021-04863-zSearch in Google Scholar

[8] Fonda, R. W.; Rowenhorst, D. J.: Crystallographic Variability in Additive Manufacturing, 42ND RisØ International Symposium on Materials Science (2022). DOI:10.1088/1757-899X/1249/1/01200710.1088/1757-899X/1249/1/012007Search in Google Scholar

[9] Lu, Y.; Wang, M.; Wu, Z.; Jones, I. P.; Wickins, M.; Green, N. R.; Basoalto, H. C.: Three-dimensional analysis of dendrites via automated serial sectioning using a Robo-Met.3D, MRS Communications (2020), pp. 461–466. DOI:10.1557/mrc.2020.4510.1557/mrc.2020.45Search in Google Scholar

[10] Qiu, R.; Aboulfadl, H.; Bäcke, O.; Stiens, D.; Andren, H. O.; Halvarsson, M.: Atom probe tomography investigation of 3D nanoscale compositional variations in CVD TiAlN nanolamella coatings, Microscopy and Microanalysis 10 (Suppl 2), (2021), pp. 150– 151. DOI:10.1016/j.surfcoat.2021.12774110.1016/j.surfcoat.2021.127741Search in Google Scholar

[11] Jones, H. G.; Mingard, K. P.; Cox, D. C.: Investigation of slice thickness and shape milled by a focused ion beam for three-dimensional reconstruction of microstructures, Ultramicroscopy 139 (2014), pp. 20–28. DOI:10.1016/j.ultramic.2014.01.00310.1016/j.ultramic.2014.01.003Search in Google Scholar PubMed

[12] Shkurmanov, A.; Krekeler, T.; Ritter, M.: Slice Thickness Optimization for the Focused Ion BeamScanning Electron Microscopy 3D Tomography of Hierarchical Nanoporous Gold, Nanomanufacturing and Metrology 5 (2022), pp. 112–118. DOI:10.1007/s41871-022-00134-w10.1007/s41871-022-00134-wSearch in Google Scholar

[13] Genus_3D Fully automated serial sectioning 3D microscope, Nakayamadenki Co., Ltd. (2017).Search in Google Scholar

[14] Adachi, Y.; Sato, N.; Ojima, M.; Nakayama, M.; Wang, Y. T.: Development of Fully Automated Serial-Sectioning 3D Microscope and Topological Approach to Pearlite and Dual-Phase Microstructure in Steels (2012). DOI:10.1007/978-3-319-48762-5_610.1007/978-3-319-48762-5_6Search in Google Scholar

[15] RoboMetBrochure_12012023, UES, Inc. (2023).Search in Google Scholar

[16] Uchic, M.; Groeber, M.; Shah, M; Callahan, P.; Shiveley, A.; Scott, M.; Chapman, M.; Spowart, J.: An Automated Multi-Modal Serial Sectioning System for Characterization of Grain-Scale Microstructures in Engineering Materials, The Minerals, Metals & Materials Society (2012), pp. 195–202. DOI:10.1007/978-3-319-48762-5_3010.1007/978-3-319-48762-5_30Search in Google Scholar

[17] Rowenhorst, D. J.; Nguyen, L.; Murphy-Leonard, A. D.; Fonda, R.W: Characterization of Microstructure in Additively Manufactured 316L using Automated Serial Sectioning (2020). DOI:10.1016/j.cossms.2020.10081910.1016/j.cossms.2020.100819Search in Google Scholar

[18] https://www.ues.com/news/rmintegrations/, accessed Juni 21, (2023).Search in Google Scholar

[19] https://www.theobjects.com/dragonfly/index.html/, accessed Juni 21, (2023).Search in Google Scholar

[20] https://www.reactivip.com/image-processing/, accessed Juni 21, (2023).Search in Google Scholar

[21] Bajer, E.: Präparationsversuche mit CFK 3D-Anlage, Bundesanstalt für Materialforschung und -prüfung (2023).Search in Google Scholar

[22] Mieller, B.; Eddah, M.; Bajer E.; Markötter, H.; Kranzmann, A.: Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages, Bundesanstalt für Materialforschung und -prüfung (2023).Search in Google Scholar

Received: 2023-06-24
Accepted: 2023-07-11
Published Online: 2023-09-14
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2023-0057/html
Scroll to top button