Startseite Liquation Cracking in Linear Friction Welded Directionally Cast Alloy 247
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Liquation Cracking in Linear Friction Welded Directionally Cast Alloy 247

  • A. Neidel , M. Giller

    Madeleine Giller Apprenticeship as a materials testing technician at the welding institute SLV Berlin-Brandenburg. After that, she studied materials science at the Berlin Institute of Technology. She graduated with a masters degree in materials science in 2012. Since November 2012 employment as engineer at the Metallography Laboratory of the Siemens Gas Turbine Works in Berlin. She has been appointed laboratory manager within the Berlin Testing Center of the Large Gas Turbine Engineering Group in 2014. Her main fields of expertise comprise failure analysis and microstructural investigations using the field emission scanning electron microscope.

    und S. Riesenbeck

    Susanne Riesenbeck joined the Gas Turbine Plant of Siemens’ Energy Sector in 1984 and first underwent vocational training there. As a materials testing technician, one of the first fields of her professional endevours was steam turbine service, namely remaining lifetime assessment by means of the replica technique. She is a metallographer and one of the principal failure analysts in the materials testing laboratory. Her main fields of expertise comprise microstructural analyses of steel and iron castings.

Veröffentlicht/Copyright: 24. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Linear Friction Welding (LFW) is a rarely used joining technology. To test the suitability of this solid-state process for hot cracking-sensitive nickel base superalloys, tests were performed using conventionally and directionally cast slabs of Alloy 247. Since LFW does not involve melting of the weld flanks, there were some expectations that this special welding technique could overcome the poor weldability of Alloy 247. However, all tested specimens failed by liquation cracking (LC) within the Weld Center Zone (WCZ) at the directionally cast side.

Kurzfassung

Das Linearreibschweißverfahren (Linear Friction Welding, LFW) ist eine eher selten eingesetzte Fügetechnik. Um die Eignung dieses Festkörperfügeverfahrens für die heißrissempfindlichen Nickelbasis-Superlegierungen zu prüfen, wurden Versuche mit konventionell sowie mit gerichteter Erstarrung gegossenen Brammen aus Alloy 247 durchgeführt Vor dem Hintergrund der schlechten Schweißbarkeit von Alloy 247 gab es eine gewisse Erwartungshaltung, diese spezielle Schweißtechnik könne sich für diesen Werkstoff eignen, da Nahtflanken beim LFW nicht aufgeschmolzen werden. Allerdings versagten alle geprüften Proben infolge der Bildung von Aufschmelzungsrissen (Liquation Cracking, LC) im Bereich der Schweißnahtmitte (Weld Center Zone, WCZ) auf der Seite des Gusses mit gerichteter Erstarrung.

About the authors

M. Giller

Madeleine Giller Apprenticeship as a materials testing technician at the welding institute SLV Berlin-Brandenburg. After that, she studied materials science at the Berlin Institute of Technology. She graduated with a masters degree in materials science in 2012. Since November 2012 employment as engineer at the Metallography Laboratory of the Siemens Gas Turbine Works in Berlin. She has been appointed laboratory manager within the Berlin Testing Center of the Large Gas Turbine Engineering Group in 2014. Her main fields of expertise comprise failure analysis and microstructural investigations using the field emission scanning electron microscope.

S. Riesenbeck

Susanne Riesenbeck joined the Gas Turbine Plant of Siemens’ Energy Sector in 1984 and first underwent vocational training there. As a materials testing technician, one of the first fields of her professional endevours was steam turbine service, namely remaining lifetime assessment by means of the replica technique. She is a metallographer and one of the principal failure analysts in the materials testing laboratory. Her main fields of expertise comprise microstructural analyses of steel and iron castings.

References / Literatur

[1] https://www.alustir.com/deutsch/twi-verfahren/linearreibschwei%C3%9Fen/, accessed April 13, 2020Suche in Google Scholar

[2] Raiser, E.; Kallee, S.: LinFric – Entwicklung einer hydraulischen Linearreibschweissmaschine. Paper presented at the International Exchange of Experience at SLV Munich, Germany, on 5 March 2002Suche in Google Scholar

[3] Kallee, S. W.; Nicholas, E. D.; Russell, M. J.: Friction welding of aero engine components. Paper presented at 10th World Conference on Titanium Ti-2003, Hamburg, Germany, 13-18 July 2003Suche in Google Scholar

[4] McAndrew et al.: A literature review of Ti-6Al-4V linear friction welding. Progress in Materials Science, Volume 92, March 2018, Pages 225-257, DOI: 10.1016/j.pmatsci.2017.10.00310.1016/j.pmatsci.2017.10.003Suche in Google Scholar

[5] Neidel, A.; Giller, M.; Riesenbeck, S.: Internal Report BLN MT/2013/0503, Berlin, August 1, 2013Suche in Google Scholar

[6] Bürgel, R.: Handbuch Hochtemperatur-Werkstofftechnik – Grundlagen, Werkstoffbeanspruchung, Hochtemperaturlegierungen. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig / Wiesbaden, 199810.1007/978-3-322-99904-7_6Suche in Google Scholar

[7] Sims, C. T.; Stoloff, N. S.; Hagel, W. C.: Super-alloys II. John Wiley & Sons, New York, 1987Suche in Google Scholar

[8] Donachie, M. J., Donachie, S. J.: Superalloys: A Technical Guide. ASM International, Materials Park, OH, 2nd EditionSuche in Google Scholar

[9] Neidel, A. (Hrsg.): Handbuch Metallschäden. 2. Auflage, Carl Hanser Verlag München Wien 2012Suche in Google Scholar

[10] Collins, M. G.; Ramirez, A. J.; Lippold, J. C.: An Investigation of Ductility-Dip Cracking in Nickel-Based Weld Metals – Part III. Welding Journal February 2004, pp. 39–49Suche in Google Scholar

[11] Proceedings of the 1st International Workshop on Hot Cracking Phenomena in Welds. Federal Institute of Materials Research and Testing (BAM), Berlin, Germany 2004Suche in Google Scholar

[12] Schuster, J.: Heißrisse in Schweißverbindungen. Entstehung, Nachweis und Vermeidung. DVS-Berichte Band 233. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, Düsseldorf 2004Suche in Google Scholar

[13] Neidel, A.; Riesenbeck, S.; Ullrich, T.; Völker, J.; Yao, C.: Hot Cracking in the HAZ of Laser-drilled Turbine Blades Made From René 80. Materialprüfung 47 (2005) 10, pp. 553–55, DOI: 10.3139/120.10069510.3139/120.100695Suche in Google Scholar

[14] Wahl, J. B.; Harris, K.: Advanced Ni-base Super-alloys for Small Gas Turbines. Cannon-Muskegon Corporation. https://cannonmuskegon.com/wp-content/uploads/2015/02/Advanced-Ni-Base-Superalloys-for-Small-Gas-Turbines-COM-2010-49th-Annual-Conf-of-Metallurgist-Oct2010-wahl-harris.pdf accessed April 13, 2020Suche in Google Scholar

[15] Hsin-Erh Huang, H.-E.; Chun-Hao Koo, C.-H.: Characteristics and Mechanical Properties of Polycrystalline CM 247 LC Superalloy Casting. Materials Transactions, Vol. 45, No. 2 (2004), pp. 56–56.to 56, DOI: 10.2320/matertrans.45.56210.2320/matertrans.45.562Suche in Google Scholar

[16] MacDonald, J. E. et al.: Influence of powder characteristics on the microstructure and mechanical properties of HIPped CM247LC Ni superalloy. Materials & Design, Volume 174 15 July 2019, 107796 DOI: 10.1016/j.matdes.2019.10779610.1016/j.matdes.2019.107796Suche in Google Scholar

[17] Basak, A.; Das, S.: Microstructural Characterization of MAR-M247 Fabricated Through Scanning Laser Epitaxy. Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference. https://sffsymposium.engr.utexas.edu/sites/default/files/2016/032-Basak.pdf accessed April 13, 2020Suche in Google Scholar

[18] Harris, K.; Ericson, G. L.; Schwer, R. E.: MAR M 247 Derivations – CM 247 Lc Ds Alloy CMSX Single Crystal Alloys – Properties & Performance. Cannon-Muskegon Corporation. https://www.tms.org/superalloys/10.7449/1984/Superalloys_1984_221_230.pdf accessed April 13, 2020Suche in Google Scholar

[19] Ericson, G. L.; Harris, K.; Schwer, R. E.: Directionally Solidified DS CM 247 LC Optimized Mechanical Properties Resulting From Extensive Gamma Prime Solutioning. Cannon-Muskegon Corporation, Presented at the Gas Turbine Conference and Exhibit Houston, Texas – March 18-21, 1985 Downloaded from https://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1985/79412/V004T11A006/2396334/v004t11a006-85-gt-107.pdf on 13 April 2020Suche in Google Scholar

[20] Linear Friction Welding. Technical Knowledge. TWI, The Welding Institute. Downloaded from https://www.twi-global.com/technical-knowledge/job-knowledge/linear-friction-welding-146 on April 13, 2020Suche in Google Scholar

[21] https://www.youtube.com/watch?v=XfLI72Mi0Bs accessed April 13, 2020Suche in Google Scholar

[22] Neidel, A. et al.: Internal report BLNMT/2018/0667, Berlin, August 4, 2018Suche in Google Scholar

[23] Janowski, G. M.: The Effect of Tantalum on the Structure/Properties of Two Polycrystalline Nickel-Base Superalloys: B-1900 + Hf and MAR-M247. NASA Contractor Report 17484, NASA-CR-174847 19850009818, February 1985, https://ntrs.nasa.gov/search.jsp?R=198500098182019-06-21T05:14:18+00:00ZSuche in Google Scholar

Received: 2020-04-15
Accepted: 2022-06-15
Published Online: 2022-09-24
Published in Print: 2022-09-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-0059/pdf
Button zum nach oben scrollen