Startseite Liquid Metal Embrittlement in Narrow Gap Welds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Liquid Metal Embrittlement in Narrow Gap Welds

  • A. Neidel , S. Riesenbeck

    joined the Gas Turbine Plant of Siemens‘ Energy Sector in 1984 and first underwent vocational training there. As a materials testing technician, one of the first fields of her professional endevours was steam turbine service, namely remaining lifetime assessment by means of the replica technique. She is a metallographer and one of the principal failure analysts in the materials testing laboratory. Her main fields of expertise comprise microstructural analyses of steel and iron castings.

    und M. Giller

    Apprenticeship as a materials testing technician at the welding institute SLV Berlin-Brandenburg. After that, she studied materials science at the Berlin Institute of Technology. She graduated with a masters degree in materials science in 2012. Since November 2012 employment as engineer at the Metallography Laboratory of the Siemens Gas Turbine Works in Berlin. She has been appointed laboratory manager within the Berlin Testing Center of the Large Gas Turbine Engineering Group in 2014. Her main fields of expertise comprise failure analysis and microstructural investigations using the field emission scanning electron microscope.

Veröffentlicht/Copyright: 14. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Failure analysts are sometimes surprised to find well-known metallurgical failure mechanisms at work in completely unexpected places. This contribution is an eloquent example for just such an incidental convergence of well-known failure mechanism and fabrication process where it was not reported to have previously occurred. Liquid Metal Embrittlement (LME) was observed in Narrow Gap Welds (NGW) produced for Welding Procedure Qualification (WPQ). The embrittling liquid metal was copper in this case. It is believed to have originated from copper backing used for weld pool protection. It was recommended to replace copper backing with ceramic weld pool protection.

Kurzfassung

Von Zeit zu Zeit werden Schadensanalytiker vom Auftreten allgemein bekannter metallurgischer Fehlermechanismen an völlig unerwarteter Stelle überrascht. Die vorliegende Arbeit präsentiert ein anschauliches Beispiel für einen solchen Fall, bei dem zufällig ein allgemein bekannter Fehlermechanismus bei einem Fertigungsprozess wirkt, über dessen Auftreten zuvor noch nicht berichtet wurde. In im Rahmen der Verfahrensprüfung (Welding Procedure Qualification, WPQ) hergestellten Engspaltschweißnähten (Narrow Gap Welds, NGW) konnte Flüssigmetallversprödung (Liquid Metal Embrittlement, LME) festgestellt werden. In diesem Fall handelte es sich beim versprödend wirkenden Flüssigmetall um Kupfer. Es wird davon ausgegangen, dass es von der zur Schweißbadsicherung eingesetzten Kupferunterlage stammt. Empfohlen wurde, die Kupferunterlage durch eine keramische Schmelzbadsicherung zu ersetzen.

About the authors

S. Riesenbeck

joined the Gas Turbine Plant of Siemens‘ Energy Sector in 1984 and first underwent vocational training there. As a materials testing technician, one of the first fields of her professional endevours was steam turbine service, namely remaining lifetime assessment by means of the replica technique. She is a metallographer and one of the principal failure analysts in the materials testing laboratory. Her main fields of expertise comprise microstructural analyses of steel and iron castings.

M. Giller

Apprenticeship as a materials testing technician at the welding institute SLV Berlin-Brandenburg. After that, she studied materials science at the Berlin Institute of Technology. She graduated with a masters degree in materials science in 2012. Since November 2012 employment as engineer at the Metallography Laboratory of the Siemens Gas Turbine Works in Berlin. She has been appointed laboratory manager within the Berlin Testing Center of the Large Gas Turbine Engineering Group in 2014. Her main fields of expertise comprise failure analysis and microstructural investigations using the field emission scanning electron microscope.

References / Literatur

[1] Malin, V. Y.: The State-Of-The-Art Of Narrow Gap Welding. AWS Annual Meeting, Philadelphia, Pa., USA, April 1983. https://trid.trb.org/view/419478 accessed March 19, 2020Suche in Google Scholar

[2] Riesenbeck, S.: Internal Report BLN MT/2020/ 0139, Berlin, March 2, 2020Suche in Google Scholar

[3] Wuschansky, M.; Richter, L.: Welding Procedure Specification WPS/19/1051, Berlin, May 16, 2019Suche in Google Scholar

[4] Nicholas, M. G.; Old, C. F.: Review Liquid metal embrittlement. Journal Of Materials Science 14 (1979) 1–18 DOI: 10.1007/BF0102832310.1007/BF01028323Suche in Google Scholar

[5] Sample, T.; Kolbe, H.: Liquid metal embrittlement (LME) susceptibility of the 8-9 % Cr martensitic steels F82H-mod., OPTIFER IVb and their simulated welded structures in liquid Pb-17Li. Journal of Nuclear Materials 283–287 (2000) 1336–1340 DOI: 10.1016/S0022-3115(00)00097-010.1016/S0022-3115(00)00097-0Suche in Google Scholar

[6] Joseph, B.; Picat, M.; Barbier, F.: Liquid metal embrittlement: A state-of-the-art appraisal. Eur. Phys. J. AP 5, 19–31 (1999) DOI: 10.1051/epjap:199910810.1051/epjap:1999108Suche in Google Scholar

[7] Heiple, C.; Bennett, W.; Rising, T.: Embrittlement of Several Stainless Steels by Liquid Copper and Liquid Braze Alloys. Materials Science and Engineering, 52 (1982) 277–289 DOI: 10.1016/0025-5416(82)90157-410.1016/0025-5416(82)90157-4Suche in Google Scholar

[8] Lynn, J. C.; Warke, W. R.; Gordon, P.: Solid Metal-Induced Embrittlement of Steel. Materials Science and Engineering, 18 (1975) 51–62 DOI: 10.1016/0025-5416(75)90072-510.1016/0025-5416(75)90072-5Suche in Google Scholar

[9] Hough, R. R.; Rolls, R.: Some Factors Influencing The Effects Of Liquid Copper On The Creep-Rupture Properties Of Iron. Scripta Metallurgica Vol. 8, pp. 39–44, 1974 DOI: 10.1016/0036-9748(74)90436-010.1016/0036-9748(74)90436-0Suche in Google Scholar

[10] Hough, R. R.; Rolls, R.: The High-Temperature Tensile Creep Behaviour Of Notched, Pure Iron Embrittled By Liquid Copper. Scripta Metallurgica Vol. 4, pp. 17–24, 1970 DOI: 10.1016/0036-9748(70)90136-510.1016/0036-9748(70)90136-5Suche in Google Scholar

[11] Shinohara, T.; Matsumoto, K.: Welding Cracks of Zn-contaminated Stainless Steel Pipe. Corrosion Science, Vol. 22, No. 8, pp. 723-737 DOI: 10.1016/0010-938X(82)90010-510.1016/0010-938X(82)90010-5Suche in Google Scholar

[12] Hough, R. R.; Rolls, R.: Creep Fracture Phenomena in Iron Embrittled by Liquid Copper. Journal Of Materials Science 6 (1971) 1493–1498 DOI: 10.1007/BF0240308910.1007/BF02403089Suche in Google Scholar

[13] Neidel, A.; Riesenbeck, S.: Hot Cracking in Inductively Bent Austenitic Stainless Steel Pipes. J Fail. Anal. and Preven. DOI:10.1007/ s11668-011-9478-4. Published online. ASM International 201110.1007/s11668-011-9478-4Suche in Google Scholar

Received: 2020-03-20
Accepted: 2021-12-10
Published Online: 2022-02-14

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-0009/pdf
Button zum nach oben scrollen