Home In-vitro effect of antimicrobial photodynamic therapy with methylene blue in two different genera of dermatophyte fungi
Article
Licensed
Unlicensed Requires Authentication

In-vitro effect of antimicrobial photodynamic therapy with methylene blue in two different genera of dermatophyte fungi

  • Teresita Spezzia-Mazzocco EMAIL logo , Susana A. Torres-Hurtado , Julio Cesar Ramírez-San-Juan and Rubén Ramos-García
Published/Copyright: July 28, 2016
Become an author with De Gruyter Brill

Abstract

Background and objectives:

Antimicrobial photodynamic therapy (aPDT) is a technique that combines the photoactivation properties of an innocuous chromophore or photosensitizer (PS) and light, producing reactive oxygen molecules that trigger cell death processes. In this study the in-vitro application of aPDT to fight fungal infections was investigated using methylene blue (MB) as the PS.

Materials and methods:

The antimicrobial PDT process was carried out with MB and red laser light (λ=633 nm) to activate the PS. Testing was performed with suspensions of various species of dermatophyte fungi (Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum), including a fungus, which to our knowledge, has not been previously studied using this dye (Trichophyton tonsurans). For T. tonsurans further optimization tests were carried out.

Results and discussion:

The fungicidal effect of MB-aPDT was evident. Microsporum strains were slightly more sensitivity to the treatment than Trichophyton strains. The response of T. tonsurans to aPDT was less than to the other fungi tested under the same conditions, or even with higher fluence. However, repetitive aPDT treatment with very low doses of light can achieve a good effectiveness with this strain effecting total growth inhibition. Light may even disturb fungi growth in some circumstances, especially in strain such as T. tonsurans.

Conclusion:

This study with Trichophyton and Microsporum strains showed that MB was an effective PS to inhibit fungal growth through aPDT, reaching a total inhibition in most of the fungi tested. It was found that repeated exposure with low-power light within the framework of aPDT treatment can achieve better results than a single exposure at higher power.

Zusammenfassung

Hintergrund und Zielsetzung:

Die antimikrobielle photodynamische Therapie (aPDT) ist eine Technik, die die Photoaktivierungseigenschaften eines unschädlichen Chromophors oder Photosensibilisators (PS) mit Licht kombiniert, so dass es zur Bildung reaktiver Sauerstoffmoleküle kommt, die schließlich zum Zelltod führende Prozesse antriggern. In der vorliegenden Studie wird die In-vitro-Anwendung der aPDT unter Verwendung von Methylenblau (MB) als PS zur Bekämpfung von Pilzinfektionen untersucht.

Materialien und Methoden:

Die aPDT erfolgte mittels MB und rotem Laserlicht (λ=633 nm) zur Aktivierung des PS. Die Tests wurden mit Suspensionen von verschiedenen Arten von Dermatophyten (Trichophyton mentagrophytes, Microsporum canis und M. gypseum) durchgeführt, einschließlich eines Pilzes (T. tonsurans), der bislang noch nicht unter Verwendung von MB untersucht wurde. Für diesen wurden weitere Optimierungsversuche durchgeführt.

Ergebnisse und Diskussion:

Die fungizide Wirkung der aPDT mit MB als PS war evident, wobei die Microsporum-Stämme empfindlicher auf die Behandlung reagierten als die Trichophyton-Stämme. Der Dermatophyt vom Typ T. tonsurans war gegenüber der aPDT deutlich unempfindlicher als die anderen Stämme, sowohl unter den gleichen Versuchsbedingungen als auch beim Einsatz höherer Lichtdosen. Allerdings konnte mit einer wiederholten aPDT-Behandlung bei sehr niedriger Lichtdosis eine gute Wirksamkeit erreicht werden. In bestimmten Fällen kann Licht sogar das Pilzwachstum stören, wie beispielsweise beim T. tonsurans.

Schlussfolgerung:

Die vorgelegte Studie mit Trichophyton- und Microsporum-Stämmen hat gezeigt, dass MB ein wirksamer PS zur Hemmung des Pilzwachstums durch aPDT ist; in fast allen untersuchten Stämmen konnte das Wachstum vollständig gehemmt werden. Es zeigte sich außerdem, dass im Rahmen der aPDT-Behandlung mit einer wiederholten Exposition mit schwachem Licht bessere Ergebnisse erreicht werden können als mit einer einmaligen Exposition bei höherer Leistung.

Acknowledgments

We thank M. Alejandra Paula Espinosa Texis from Benemérita Universidad Autónoma de Puebla for supplying all strains and CONACYT by the financial support (Scholarship # 210747).

  1. Conflict of interest statement: The authors state no conflict of interest. All authors have read the journal’s Publication Ethics and Publication Malpractice Statement available at the journal’s website and hereby confirm that they comply with all its parts applicable to the present scientific work.

References

[1] Martínez E, Ameen M, Tejada D, Arenas R. Microsporum spp. onychomycosis: disease presentation, risk factors and treatment responses in an urban population. Braz J Infect Dis 2014;18(2):181–6.10.1016/j.bjid.2013.08.005Search in Google Scholar PubMed

[2] Mochizuki T, Anzawa K, Sakata Y, Fujihiro M. Simple identification of Trichophyton tonsurans by chlamydospore-like structures produced in culture media. J Dermatol 2013;40(12):1027–32.10.1111/1346-8138.12354Search in Google Scholar PubMed

[3] Baltazar LM, Ray A, Santos DA, Cisalpino PS, Friedman AJ, Nosanchuk JD. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front Microbiol 2015;6:202.10.3389/fmicb.2015.00202Search in Google Scholar PubMed PubMed Central

[4] Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, Ribeiro MS, Mylonakis E, Hamblin MR, Tegos GP. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 2012;3:120.10.3389/fmicb.2012.00120Search in Google Scholar PubMed PubMed Central

[5] Cornelius JF, Slotty PJ, El Khatib M, Giannakis A, Senger B, Steiger HJ. Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. Photodiagnosis Photodyn Ther 2014;11(1):1–6.10.1016/j.pdpdt.2014.01.001Search in Google Scholar PubMed

[6] Chen Y, Liu H, Zhang K, Gao L. Massive exudative retinal detachment following photodynamic therapy for retinal hemangioma in von Hippel–Lindau Syndrome. Photodiagnosis Photodyn Ther 2014;11(2):250–3.10.1016/j.pdpdt.2014.02.013Search in Google Scholar PubMed

[7] Cieplik F, Tabenski L, Buchalla W, Maisch T. Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front Microbiol 2014;5:405.10.3389/fmicb.2014.00405Search in Google Scholar PubMed PubMed Central

[8] Cronin L, Moffitt M, Mawad D, Morton OC, Lauto A, Stack C. An in vitro study of the photodynamic effect of rose bengal on Trichophyton rubrum. J Biophotonics 2014;7(6):410–7.10.1002/jbio.201200168Search in Google Scholar PubMed

[9] Morton CO, Chau M, Stack C. In vitro combination therapy using low dose clotrimazole and photodynamic therapy leads to enhanced killing of the dermatophyte Trichophyton rubrum. BMC Microbiol 2014;14:261.10.1186/s12866-014-0261-zSearch in Google Scholar PubMed PubMed Central

[10] Smijs T, Dame Z, de Haas E, Aans JB, Pavel S, Sterenborg H. Photodynamic and nail penetration enhancing effects of novel multifunctional photosensitizers designed for the treatment of onychomycosis. Photochem Photobiol 2013;90(1):189–200.10.1111/php.12196Search in Google Scholar PubMed

[11] Prates RA, Fuchs BB, Mizuno K, Naqvi Q, Kato IT, Ribeiro MS, Mylonakis E, Tegos GP, Hamblin MR. Effect of virulence factors on the photodynamic inactivation of Cryptococcus neoformans. PLoS One 2013;8(1):e54387.10.1371/journal.pone.0054387Search in Google Scholar

[12] Jeon YM, Lee HS, Jeong D, Oh HK, Ra KH, Lee MY. Antimicrobial photodynamic therapy using chlorin e6 with halogen light for acne bacteria-induced inflammation. Life Sci 2015;124:56–63.10.1016/j.lfs.2014.12.029Search in Google Scholar

[13] Nunes Mario DA, Denardi LB, Brayer Pereira DI, Santurio JM, Alves SH. In vitro photodynamic inactivation of Sporothrix schenckii complex species. Med Mycol 2014;52(7):770–3.10.1093/mmy/myu041Search in Google Scholar

[14] Fekrazad R, Ghasemi Barghi V, Poorsattar Bejeh Mir A, Shams-Ghahfarokhi M. In vitro photodynamic inactivation of Candida albicans by phenothiazine dye (new methylene blue) and Indocyanine green (EmunDo®). Photodiagnosis Photodyn Ther 2015;12(1):52–7.10.1016/j.pdpdt.2014.12.006Search in Google Scholar

[15] Lyon JP, Moreira LM, de Moraes PC, dos Santos FV, de Resende MA. Photodynamic therapy for pathogenic fungi. Mycoses 2011;54(5):e265–71.10.1111/j.1439-0507.2010.01966.xSearch in Google Scholar

[16] Rodrigues GB, Ferreira LK, Wainwright M, Braga GU. Susceptibilities of the dermatophytes Trichophyton mentagrophytes and T. rubrum microconidia to photodynamic antimicrobial chemotherapy with novel phenothiazinium photosensitizers and red light. J Photochem Photobiol B 2012;116:89–94.10.1016/j.jphotobiol.2012.08.010Search in Google Scholar

[17] Ouf SA, Abdel-Kader MH, Shokeir HA, El-Adly AA. Study of solar photosensitization processes on dermatophytic fungi. Acta Microbiol Pol 2003;52(1):65–79.Search in Google Scholar

[18] Figueiredo Souza LW, Souza SV, Botelho AC. Randomized controlled trial comparing photodynamic therapy based on methylene blue dye and fluconazole for toenail onychomycosis. Dermatol Ther 2014;27(1):43–7.10.1111/dth.12042Search in Google Scholar

[19] Tardivo JP, Wainwright M, Baptista M. Small scale trial of photodynamic treatment of onychomycosis in São Paulo. J Photochem Photobiol B 2015;150:66–8.10.1016/j.jphotobiol.2015.03.015Search in Google Scholar

[20] Tardivo JP, Del Giglio A, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, de Fátima Turchiello R, Baptista MS. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn Ther 2005;2(3):175–91.10.1016/S1572-1000(05)00097-9Search in Google Scholar

[21] Romagnoli C, Mares D, Sacchetti G, Bruni A. The photodynamic effect of 5-(4-hydroxy-1-butinyl)-2,2′-bithienyl on dermatophytes. Mycol Res 1998;102(12):1519–24.10.1017/S0953756298006637Search in Google Scholar

[22] Hollander C, Visser J, de Haas E, Incrocci L, Smijs T. Effective single photodynamic treatment of ex vivo onychomycosis using a multifunctional porphyrin photosensitizer and green light. J Fungi 2015;1(2):138–53.10.3390/jof1020138Search in Google Scholar PubMed PubMed Central

[23] Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012;40(2):516–33.10.1007/s10439-011-0454-7Search in Google Scholar PubMed PubMed Central

[24] Fekrazad R, Poorsattar Bejeh Mir A, Ghasemi Barghi V, Shams-Ghahfarokhi M. Eradication of C. albicans and T. rubrum with photoactivated indocyanine green, Citrus aurantifolia essential oil and fluconazole. Photodiagnosis Photodyn Ther 2015;12(2):289–97.10.1016/j.pdpdt.2014.12.009Search in Google Scholar PubMed

[25] Xu ZL, Xu J, Zhuo FL, Wang L, Xu W, Xu Y, Zhang XY, Zhao JY. Effects of laser irradiation on Trichophyton rubrum growth and ultrastructure. Chin Med J (Engl) 2012;125(20):3697–700.Search in Google Scholar

Received: 2016-5-27
Revised: 2016-6-20
Accepted: 2016-6-21
Published Online: 2016-7-28
Published in Print: 2016-8-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/plm-2016-0021/html
Scroll to top button