Home Low-level laser therapy enhances muscle regeneration through modulation of inflammatory markers
Article
Licensed
Unlicensed Requires Authentication

Low-level laser therapy enhances muscle regeneration through modulation of inflammatory markers

  • Lívia Assis ORCID logo EMAIL logo , Ana Iochabel Soares Moretti , Sabrina Messa Peviani , João Luiz Quagliotti Durigan , Thiago Luiz Russo , Natália Rodrigues , Jéssica Bastos , Vivian Cury , Heraldo Possolo de Souza and Nivaldo Antonio Parizotto
Published/Copyright: June 7, 2016
Become an author with De Gruyter Brill

Abstract

Objective:

The purpose of this study was to evaluate the in vivo response of two different laser fluences (4 and 8 J/cm2) on molecular markers involved in muscle repair after a cryolesion of the tibialis anterior (TA) muscle.

Study design:

Forty-eight male Wistar rats were randomly distributed into six groups: control (C); normal/uninjured TA muscle treated with either 4 J/cm2 (L4J) or 8 J/cm2 (L8J) laser irradiation; injured TA muscle without treatment (IC); and injured TA muscle treated with either 4 J/cm2 (IL4J) or 8 J/cm2 (IL8J) laser irradiation. The injured region was irradiated daily for 5 consecutive days, starting immediately after the cryolesion was set using a GaAlAs laser (continuous wave; wavelength, 830 nm; tip area, 0.0028 cm2; power, 20 mW). The animals were euthanized on the sixth day after injury. The injured right TA muscles were removed for histological evaluation, zymography, and immunoblotting and biotin switch analyses. Nitrite and nitrate plasma levels were measured to evaluate the nitric oxide (NO) production.

Results:

After low-level laser therapy (LLLT), in both injured treatment groups (IL4J and IL8J) the injured area was reduced, the NO production decreased and the S-nitrosated COX-2 was lowered. Moreover, both laser fluences increased the activity and expression of MMP-2.

Conclusion:

These results suggest that LLLT, for both fluences, could be an efficient therapeutic approach to modulate molecules involved in injured muscle, accelerating regeneration process.

Zusammenfassung

Zielsetzung:

Ziel der vorliegenden Studie war es, den In-vivo-Effekt von zwei verschiedenen Laser-Energiedichten (4 und 8 J/cm2) auf an der Muskelregeneration nach Kryoverletzung des Musculus tibialis anterior (TA) beteiligte molekulare Marker zu untersuchen.

Studiendesign:

Achtundvierzig männliche Wistar-Ratten wurden randomisiert in sechs Gruppen eingeteilt: Kontrollgruppe (C); normaler/unverletzter TA-Muskel behandelt mit entweder 4 J/cm2 (L4J) oder 8 J/cm2 (L8J) Laserbestrahlung; verletzter TA-Muskel ohne Laserbehandlung (IC); und verletzter TA-Muskel behandelt mit entweder 4 J/cm2 (IL4J) oder 8 J/cm2 (IL8J) Laserbestrahlung. Die verletzte Muskelregion wurde einmal täglich an fünf aufeinanderfolgenden Tagen mit einem GaAlAs-Laser (kontinuierlicher Modus, Wellenlänge: 830 nm, Faserendfläche: 0.0028 cm2, Leistung: 20 mW) bestrahlt, beginnend unmittelbar nach der Kryoverletzung. Die Tiere wurden am sechsten Tag nach der Verletzung eingeschläfert. Die verletzten rechten TA-Muskeln wurden für die histologische Auswertung, die Zymographie sowie Immunoblotting- und Biotin-Switch-Tests entnommen. Der Nitrit- und Nitrat-Plasmaspiegel wurde gemessen, um die Stickstoffmonoxid (NO)-Produktion zu bewerten.

Ergebnisse:

Nach der Low-Level-Laser-Therapie (LLLT) war in den Behandlungsgruppen IL4J und IL8J der verletzte Bereich in der Größe reduziert, die NO-Produktion verringert und das S-nitrosylierte COX-2 gesenkt. Außerdem erhöhte die Laserbestrahlung mit beiden Energiedichten die Aktivität und Expression von MMP-2.

Fazit:

Die Ergebnisse legen nahe, dass die LLLT mit beiden untersuchten Energiedichten einen effizienten therapeutischen Ansatz zur Modulation von Molekülen, die bei Muskelverletzungen eine Rolle spielen, darstellt und zur Beschleunigung des Regenerationsprozesses beiträgt.

Acknowledgments

We acknowledge CAPES Foundation for financial support, Emergency Medicine Division (LIM 51), Faculdade de Medicina da Universidade de São Paulo for providing technical support in biochemical and molecular biology analyses and Núcleo de Pesquisa e Ensino em Fototerapia nas Ciências da Saúde (NUPEN) for supporting and calibrating the laser equipment.

  1. Conflict of interest statement: The authors state no conflict of interest. All authors have read the journal’s Publication Ethics and Publication Malpractice Statement available at the journal’s website and hereby confirm that they comply with all its parts applicable to the present scientific work.

References

[1] Järvinen TA, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 2014;3(4):337–45.10.32098/mltj.04.2013.16Search in Google Scholar

[2] Kasemkijwattana C, Menetrey J, Bosch P, Somogyi G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SS, Huard J. Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res 2000;370:272–85.10.1097/00003086-200001000-00028Search in Google Scholar

[3] Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 2002;84-A(5):822–32.10.2106/00004623-200205000-00022Search in Google Scholar

[4] Li Y, Cummins J, Huard J. Muscle injury and repair. Curr Opin Orthop 2001;12(5):409–15.10.1097/00001433-200110000-00008Search in Google Scholar

[5] Filippin LI, Moreira AJ, Marroni NP, Xavier RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 2009;21(3–4): 157–63.10.1016/j.niox.2009.08.002Search in Google Scholar

[6] Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 2011;1(4):2029–62.10.1002/cphy.c100092Search in Google Scholar

[7] Adams V, Nehrhoff B, Späte U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G. Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res 2002;54(1):95–104.10.1016/S0008-6363(02)00228-6Search in Google Scholar

[8] Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005;57(2):217–52.10.1124/pr.57.2.1Search in Google Scholar PubMed

[9] Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001;166(6):3873–81.10.4049/jimmunol.166.6.3873Search in Google Scholar PubMed

[10] Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007;8(3):221–33.10.1038/nrm2125Search in Google Scholar PubMed PubMed Central

[11] Marqueti RC, Prestes J, Stotzer US, Paschoal M, Leite RD, Perez SE, Selistre de Araujo HS. MMP-2, jumping exercise and nandrolone in skeletal muscle. Int J Sports Med 2008;29(7):559–63.10.1055/s-2007-989271Search in Google Scholar PubMed

[12] Barnes BR, Szelenyi ER, Warren GL, Urso ML. Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. Am J Physiol Cell Physiol 2009;297(6):C1501–8.10.1152/ajpcell.00217.2009Search in Google Scholar PubMed

[13] Assis L, Moretti AI, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 2012;44(9):726–35.10.1002/lsm.22077Search in Google Scholar PubMed PubMed Central

[14] Cressoni MD, Dib Giusti HH, Casarotto RA, Anaruma CA. The effects of a 785-nm AlGaInP laser on the regeneration of rat anterior tibialis muscle after surgically-induced injury. Photomed Laser Surg 2008;26(5):461–6.10.1089/pho.2007.2150Search in Google Scholar PubMed

[15] Vatansever F, Rodrigues NC, Assis LL, Peviani SS, Durigan JL, Moreira FM, Hamblin MR, Parizotto NA. Low intensity laser therapy accelerates muscle regeneration in aged rats. Photonics Lasers Med 2012;1(4):287–97.10.1515/plm-2012-0035Search in Google Scholar PubMed PubMed Central

[16] Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 2012;1(4):267–86.10.1515/plm-2012-0032Search in Google Scholar PubMed PubMed Central

[17] Miyabara EH, Martin JL, Griffin TM, Moriscot AS, Mestril R. Overexpression of inducible 70-kDa heat shock protein in mouse attenuates skeletal muscle damage induced by cryolesioning. Am J Physiol Cell Physiol 2006;290(4):C1128–38.10.1152/ajpcell.00399.2005Search in Google Scholar PubMed

[18] Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001;2001(86):pl1.10.1126/stke.2001.86.pl1Search in Google Scholar PubMed

[19] Baptista J, Martins MD, Pavesi VC, Bussadori SK, Fernandes KP, Pinto Júnior Ddos S, Ferrari RA. Influence of laser photobiomodulation on collagen IV during skeletal muscle tissue remodeling after injury in rats. Photomed Laser Surg 2011;29(1):11–7.10.1089/pho.2009.2737Search in Google Scholar PubMed

[20] Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 2011;26(3):335–40.10.1007/s10103-010-0850-5Search in Google Scholar PubMed

[21] Rennó AC, Toma RL, Feitosa SM, Fernandes K, Bossini PS, de Oliveira P, Parizotto N, Ribeiro DA. Comparative effects of low-intensity pulsed ultrasound and low-level laser therapy on injured skeletal muscle. Photomed Laser Surg 2011;29(1):5–10.10.1089/pho.2009.2715Search in Google Scholar PubMed

[22] Durigan JL, Peviani SM, Russo TL, Delfino GB, Ribeiro JU, Cominetti MR, Selistre-de-Araujo HS, Salvini TF. Effects of alternagin-C from Bothrops alternatus on gene expression and activity of metalloproteinases in regenerating skeletal muscle. Toxicon 2008;52(6):687–94.10.1016/j.toxicon.2008.07.018Search in Google Scholar PubMed

[23] Servetto N, Cremonezzi D, Simes JC, Moya M, Soriano F, Palma JA, Campana VR. Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of low-level laser therapy in experimental myopathy. Lasers Surg Med 2010;42(6):577–83.10.1002/lsm.20910Search in Google Scholar PubMed

[24] Morrone G, Guzzardella GA, Orienti L, Giavaresi G, Fini M, Rocca M, Torricelli P, Martini L, Giardino R. Muscular trauma treated with a Ga-Al-As diode laser: in vivo experimental study. Lasers Med Sci 1998;13(4):293–8.10.1007/s101030050011Search in Google Scholar PubMed

[25] Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, González-Gallego J. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 2006;38(7):704–13.10.1002/lsm.20371Search in Google Scholar PubMed

[26] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271(5 Pt 1):C1424–37.10.1152/ajpcell.1996.271.5.C1424Search in Google Scholar PubMed

[27] Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 2005;310(5756):1966–70.10.1126/science.1119407Search in Google Scholar PubMed

[28] Cuzzocrea S, Salvemini D. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 2007;71(4):290–7.10.1038/sj.ki.5002058Search in Google Scholar PubMed

[29] Honmura A, Yanase M, Obata J, Haruki E. Therapeutic effect of Ga-Al-As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 1992;12(4):441–9.10.1002/lsm.1900120414Search in Google Scholar PubMed

[30] Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM. Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 2006;24(1):33–7.10.1089/pho.2006.24.33Search in Google Scholar PubMed

[31] Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 2000;108(1):29–34.10.1034/j.1600-0722.2000.00783.xSearch in Google Scholar PubMed

[32] Lopes-Martins RA, Albertini R, Martins PS, Bjordal JM, Faria Neto HC. Spontaneous effects of low-level laser therapy (650 nm) in acute inflammatory mouse pleurisy induced by carrageenan. Photomed Laser Surg 2005;23(4):377–81.10.1089/pho.2005.23.377Search in Google Scholar PubMed

[33] Moriyama Y, Moriyama EH, Blackmore K, Akens MK, Lilge L. In vivo study of the inflammatory modulating effects of low-level laser therapy on iNOS expression using bioluminescence imaging. Photochem Photobiol 2005;81(6):1351–5.10.1562/2005-02-28-RA-450Search in Google Scholar PubMed

[34] Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS. COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm Res 2007;56(6):228–9.10.1007/s00011-007-6211-6Search in Google Scholar PubMed

[35] Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdière-Sahuqué M, Fardeau M, Alameddine HS. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 1999;205(1):158–70.10.1006/dbio.1998.9107Search in Google Scholar PubMed

[36] Alves AN, Fernandes KP, Melo CA, Yamaguchi RY, França CM, Teixeira DF, Bussadori SK, Nunes FD, Mesquita-Ferrari RA. Modulating effect of low level-laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 2014;29(2):813–21.10.1007/s10103-013-1428-9Search in Google Scholar PubMed

[37] Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 2001;29(2): 179–84.10.1002/lsm.1107Search in Google Scholar PubMed

Received: 2016-2-4
Revised: 2016-4-12
Accepted: 2016-4-15
Published Online: 2016-6-7
Published in Print: 2016-8-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/plm-2016-0005/html
Scroll to top button