Startseite Naturwissenschaften TiO2, Au@TiO2 and C-Au@TiO2 nanocomposites for enhanced photodegradation of commercial henna dye
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

TiO2, Au@TiO2 and C-Au@TiO2 nanocomposites for enhanced photodegradation of commercial henna dye

  • Balakrishnan Karthikeyan ORCID logo EMAIL logo , Kathirasan S. Ramya , Parameswari R. Nithiasri und Jeevanandham Aarthi
Veröffentlicht/Copyright: 11. November 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

Titanium dioxide (TiO2) has been extensively researched in a variety of domains, such as catalysis, photocatalysis and antibacterial agents. It has been discovered that TiO2 nanocomposite doped with gold are very effective in photo catalytically degrading organic pollutants. As a result, TiO2, Au@TiO2 and C-Au@TiO2 materials are an excellent choice for these applications. The crystal phase, particle size, and shape all effect the fascinating physical and chemical properties. TiO2. TiO2, Au@TiO2 and C-Au@TiO2 nanocomposites are prepared by co-precipitation method. XRD, FTIR, UV-DRS, FE-SEM and EDX studies are used to characterize these nanocomposite. Optical bandgap energy is reduced when carbon sphere and gold were loaded on to the TiO2 nano semiconductor. Its morphological, optical, and electrical characteristics make the as prepared C-Au@TiO2 will be the better choice in environmental applications. C-Au@TiO2 has low band gap energy when compared to Au@TiO2 and TiO2. It is an excellent catalyst for photocatalytic degradation of commercial Henna dye which conatians Lawsone as the maor chemical compound which need to de degradaed in the environmental pollution caused by it. The proposed C-Au@TiO2 catalyst degraded the commercial henna dye (Lawsone) with the good efficiency of 79 % in lesser time scale is reported for first time in this work.


Corresponding author: Balakrishnan Karthikeyan, Department of Chemistry, Annamalai University, Annamalai Nagar, Chidambaram 608 002, India, e-mail:
Article note: A collection of articles based on contributions from the 50th IUPAC World Chemistry Congress held from July 14–19, 2025, in Kuala Lumpur, Malaysia and organized by the Institut Kimia Malaysia (IKM).
  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: BK: concept supervision, KSR: data aquistion, PRN: analysing data, JA: checking.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: All the data are included in the manuscript.

References

1. Nogishi, N.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Chem. Lett. 1995, 841. https://doi.org/10.1016/S1010-6030(02)00434-3.Suche in Google Scholar

2. Hoffamnn, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95 (1), 69–96. https://doi.org/10.1021/cr00033a004.95.Suche in Google Scholar

3. Kamat, P. V.; Fedler, J. H., Eds., Nanocomposite and Nanostructured Films; Wiley-VCH: New York, 1998.Suche in Google Scholar

4. Jalandhara, D.; Kumar, S.; Dalal, J.; Singh, G.; Kumar, S.; Badru, R.; Singh, Y.; Sharma, S. V.; Kaushal, S. Adv. Mater. 2025, 6, 641–657. https://doi.org/10.1039/d4ma01053a.Suche in Google Scholar

5. Gaur, J.; Kumar, S.; Pal, M.; Kaur, H.; Badru, R.; Momoh, J.; Pal, R.; Kumar, S. Adv. Nanosci. Nanotechnol. 2023, 14, 035014.10.1088/2043-6262/acf28aSuche in Google Scholar

6. Kaushal, S.; Kaur, H.; Kumar, S.; Badru, R.; Mittal, S.; Singh, P. Novel Horizon: Smart TiO2/Sn (IV) SbP Nanocomposite with Enhanced Electrochemical and Photocatalytic Properties. Russ. J. Inorg. Chem. 2020, 65 (4), 616–625.10.1134/S0036023620040087Suche in Google Scholar

7. Eniko, B.; Gabor, K.; Tamas, G.; Krisztian, N.; Egon, K.; Peter, B.; Lucian, B.; Zsolt, P.; Klara, H. Catal. Today 2018, 300, 28. https://doi.org/10.1016/j.cattod.2017.03.019.Suche in Google Scholar

8. Anpo, M.; Ichihasi, Y.; Takeuchi, M.; Yamashita, H. Stud. Surf. Sci. Catal. 1999, 121, 305. https://doi.org/10.1016/S0167-2991(99)80084-6.Suche in Google Scholar

9. Anpo, M.; Ichihasi, Y.; Takeuchi, M.; Yamashita, H. Res. Chem. Intermed. 1998, 24, 143. https://doi.org/10.1163/156856798X00735.Suche in Google Scholar

10. Anpo, M.; Che, M. Adv. Catal. 1999, 44, 119. https://doi.org/10.1016/S0360-0564(08)60513-1.Suche in Google Scholar

11. Li, X. Z.; Li, F. B. Environ. Sci. Technol. 2001, 35, 2381. https://doi.org/10.1021/es001752w.Suche in Google Scholar PubMed

12. Subramanian, V.; Wolf, E.; Kamat, P. V. J. Phys. Chem. B 2001, 105, 11439. https://doi.org/10.1021/jp011118k.Suche in Google Scholar

13. Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Andreeva, D.; Tabakova, T.; Ilieva, L.; Idakiev, V. Catal. Today 2002, 75, 169. https://doi.org/10.1016/S0920-5861(02)00060-3.Suche in Google Scholar

14. Date, M.; Ichihashi, Y.; Yamashita, T.; Chiorino, A.; Boccuzzi, F.; Haruta, M. Catal. Today 2002, 75, 51.Suche in Google Scholar

15. Guan, J.; Ma, N. Res. Pol. 2007, 36, 880–886. https://doi.org/10.1016/j.respol.2007.02.004.Suche in Google Scholar

16. Primo, A.; Corma, A.; García, H. Phys. Chem. Chem. Phys. 2011, 13, 886–910. https://doi.org/10.1039/C0CP00917B.Suche in Google Scholar PubMed

17. Haruta, M. Size- and Support-Dependency in the Catalysis of Gold. Catal. Today 1997, 36, 153–166. https://doi.org/10.1016/S0920-5861(96)00208-8.Suche in Google Scholar

18. Khan, A. A. P.; Khana, A.; Rahmana, M. M.; Asiria, A. M.; Oves, M. Int. J. Biol. Macromol. 2017, 98, 256. https://doi.org/10.1016/j.ijbiomac.2017.02.005.Suche in Google Scholar PubMed

19. Li, P.; Li, X.; Saravanan, R.; Li, C. M.; Leong, S. S. J. RSC Adv. 2012, 2, 4031. https://doi.org/10.1016/j.ijbiomac.2017.02.005.Suche in Google Scholar

20. Khan, A. A. P.; Khan, A.; Rahman, M. M.; Asiri, A. M.; Oves, M. Int. J. Biol. Macromol. 2016, 89, 198. https://doi.org/10.1016/j.ijbiomac.2016.04.064.Suche in Google Scholar PubMed

21. Islam, S.; Butolab, B. S.; Mohammad, F. RSC Adv. 2016, 6, 44232.10.1039/C6RA05799CSuche in Google Scholar

22. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarex, P. J. J. Nano Lett. 2012, 12, 4271. https://doi.org/10.1021/nl301934w.Suche in Google Scholar PubMed

23. Diao, W. R.; Hu, Q. P.; Feng, S. S.; Li, W. Q.; Xu, J. G. J. Agric. Food Chem. 2013, 61, 6044. https://doi.org/10.1021/jf4007856.Suche in Google Scholar PubMed

24. Dewanjee, S.; Kundu, M.; Maiti, A.; Majumdar, R.; Majumdar, A. Trop. J. Pharm. Res. 2007, 6, 773.10.4314/tjpr.v6i3.14658Suche in Google Scholar

25. Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. J. Nanopart. Res. 2007, 9, 479.10.1007/s11051-006-9150-1Suche in Google Scholar

26. Wang, Y.; Wan, J.; Miron, R. J.; Zhao, Y.; Zhang, Y. Nanoscale 2016, 8, 11143. https://doi.org/10.1039/C6NR01114D.Suche in Google Scholar PubMed

27. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. Nanotechnology 2005, 16, 2346. https://doi.org/10.1088/0957-4484/16/10/059.Suche in Google Scholar PubMed

28. Shoeib, T.; Siu, K. W. M.; Hopkinson, A. C. J. Phys. Chem. A 2002, 106, 6121.10.1021/jp013662zSuche in Google Scholar

29. Amjad, H. E. S.; Alan, P. N.; Hafid, A.-D.; Suki, P.; Neil, C.; Steven, Y. Deposition of Anatase on the Surface of Activated Carbon. Surf. Coat. Technol. 2004, 187, 284–92. https://doi.org/10.1016/j.surfcoat.2004.03.012.Suche in Google Scholar

30. Liu, J. H.; Yang, R.; Li, S. M. Preparation and Application of Efficient TiO2/ACFs Photocatalyst. J. Environ. Sci. 2006, 18, 979–81. https://doi.org/10.1016/S1001-0742(06)60025-9.Suche in Google Scholar PubMed

31. Lassoued, M. S.; Lassoued, A.; Ammar, S.; Gadri, A.; Salah, A. B.; García-Granda, S. Synthesis and Characterization of Co-Doped Nano-TiO2 Through Co-Precipitation Method for Photocatalytic Activity. J. Mater. Sci.: Mater. Electron. 2018, 29 (11), 8914–8922.10.1007/s10854-018-8910-xSuche in Google Scholar

32. Naveenkumar, R.; Karthikeyan, B.; Senthilvelan, S. Braz. J. Phys. 2024, 54, 170–191.10.1007/s13538-024-01543-6Suche in Google Scholar

33. Karunakaran, C.; Anilkumar, P.; Gomathisankar, P. Chem. Cent. J. 2011, 5, 1–9. https://doi.org/10.1007/s11814-010-0503-1.Suche in Google Scholar

34. Osonga, F. J.; Avedisian, A.; Sadik, O. A. ACS Omega 2019, 4, 6511–6520.10.1021/acsomega.8b02389Suche in Google Scholar PubMed PubMed Central

35. Du, M.; Yang, L.; Wang, M.; Li, C.; Zhan, H. Int. J. Miner. Metall. Mater. 2024, 31, 1745–1751.10.1007/s12613-023-2807-2Suche in Google Scholar

36. Xu, Q.; Liu, Z. Theor. Found. Chem. Eng. 2023, 57, 1610–1617. https://doi.org/10.1134/S0040579523330114.Suche in Google Scholar

37. Kubelka, P.; Munk, F. Z. Tech. Phys. 1931, 12, 593–601.Suche in Google Scholar

38. Kubelka, P. J. Opt. Soc. Am. 1948, 38, 448–457. https://doi.org/10.1364/JOSA.38.000448.Suche in Google Scholar PubMed

39. Fuller, M. P.; Griffiths, P. R. Anal. Chem. 1978, 50, 1906–1910. https://doi.org/10.1021/ac50035a045.Suche in Google Scholar

40. Ratchawong, S.; Wacharawichanant, S.; Tanodekaew, S. Mater. Sci. Forum 2020, 998, 96–101. https://doi.org/10.4028/www.scientific.net/MSF.998.96.Suche in Google Scholar

41. Serafin, J.; Bujaldón, R.; Sreńscek-Nazzal, J.; Kałamaga, A.; Gomez, E.; Vendrell, X.; Serra, A. Chem. Eng. J. 2025, 169005. https://doi.org/10.1016/j.cej.2025.169005.Suche in Google Scholar

42. Deng, H.; Xiao, P.; Yang, L.; Luo, J.; He, M.; Wang, P.; Jiang, B.; Xiao, B. J. Sol-Gel Sci. Technol. 2025, 1–12. https://doi.org/10.1007/s10971-025-06669-w.Suche in Google Scholar

43. Phakathi, N. A.; Tichapondwa, S. M.; Chirwa, E. M. J. Photochem. Photobiol. A Chem. 2025, 462, 116252. https://doi.org/10.1016/j.jphotochem.2024.116252.Suche in Google Scholar

44. El Mchaouri, M.; Mallah, S.; Abouhajjoub, D.; Boumya, W.; Elmoubarki, R.; Essadki, A.; Barka, N.; Elhalil, A. Tetrahedron Green Chem. 2025, 100084. https://doi.org/10.1016/j.tgchem.2025.100084.Suche in Google Scholar

45. Naveenkumar, R.; Karthikeyan, B.; Senthilvelan, S. Biomass Convers. Biorefin. 2025, 15, 3571–3583. https://doi.org/10.1007/s13399-023-05231-4.Suche in Google Scholar

46. Yue, Y.; Yue, X.; Tang, X.; Han, L.; Wang, J.; Wang, S.; Du, C. Heliyon 2024, 10, 30817–0829. https://doi.org/10.1016/j.heliyon.2024.e30817.Suche in Google Scholar PubMed PubMed Central

47. Ling, Q.; Sun, J.; Zhou, Q. Preparation and Characterization of Visible-Light-Driven Titania Photocatalyst Co-Doped with Boron and Nitrogen. Appl. Surf. Sci. 2008, 254 (10), 3236–3241. https://doi.org/10.1016/j.apsusc.2007.11.001.Suche in Google Scholar

48. Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Petrik, L. Preparation of Visible-Light Responsive N–F-Codoped TiO2 Photocatalyst by a Sol–Gel-Solvothermal Method. J. Photochem. Photobiol. A Chem. 2006, 184 (3), 282–288. https://doi.org/10.1016/j.jphotochem.2006.04.041.Suche in Google Scholar

49. Wen, C.; Zhu, Y. J.; Kanbara, T.; Zhu, H. Z.; Xiao, C. F. Effects of I and F Codoped TiO2 on the Photocatalytic Degradation of Methylene Blue. Desalination 2009, 249 (2), 621–625. https://doi.org/10.1016/j.desal.2009.01.028.Suche in Google Scholar

50. Yu, J.; Zhou, M.; Cheng, B.; Zhao, X. Preparation, Characterization and Photocatalytic Activity of in Situ N, S-Codoped TiO2 Powders. J. Mol. Catal. A: Chem. 2006, 246 (1-2), 176–184. https://doi.org/10.1016/j.molcata.2005.10.034.Suche in Google Scholar

51. Yu, C.; Cai, D.; Yang, K.; Yu, J. C.; Zhou, Y.; Fan, C. Sol–Gel Derived S, I-Codoped Mesoporous TiO2 Photocatalyst with High Visible-Light Photocatalytic Activity. J. Phys. Chem. Solids 2010, 71 (9), 1337–1343. https://doi.org/10.1016/j.jpcs.2010.06.001.Suche in Google Scholar

52. Noorimotlagh, Z.; Kazeminezhad, I.; Jaafarzadeh, N.; Ahmadi, M.; Ramezani, Z. Improved Performance of Immobilized TiO2 Under Visible Light for the Commercial Surfactant Degradation: Role of Carbon Doped TiO2 and Anatase/Rutile Ratio. Catal. Today 2020, 348, 277–289. https://doi.org/10.1016/j.cattod.2019.08.051.Suche in Google Scholar

53. Ariza-Tarazona, M. C.; Villarreal-Chiu, J. F.; Hernández-López, J. M.; De la Rosa, J. R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E. I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard Mater. 2020, 395, 122632. https://doi.org/10.1016/j.jhazmat.2020.122632.Suche in Google Scholar PubMed

54. Li, D.; Calebe, V. C.; Li, Y.; Liu, H.; Lei, Y. Interstitial N-Doped TiO2 for Photocatalytic Methylene Blue Degradation Under Visible Light Irradiation. Catalysts 2024, 14 (10), 681. https://doi.org/10.3390/catal14100681.Suche in Google Scholar

55. Li, C.; Lin, S.; Zhang, W.; Qi, K. Enhanced Photocatalytic Degradation of Tetracycline by Mn, S Co-Doped TiO2 Under Visible-Light Irradiation. J. Photochem. Photobiol. A Chem. 2025, 467, 116423. https://doi.org/10.1016/j.jphotochem.2025.116423.Suche in Google Scholar

56. Lin, C.; Gao, Y.; Zhang, J.; Xue, D.; Fang, H.; Tian, J.; Zhou, C.; Zhang, C.; Li, Y.; Li, H. GO/TiO2 Composites as a Highly Active Photocatalyst for the Degradation of Methyl Orange. J. Mater. Res. 2020, 35 (10), 1307–1315. https://doi.org/10.1557/jmr.2020.41.Suche in Google Scholar

57. Junqi, L.; Zhanyun, G.; Yu, W.; Zhenfeng, Z. Three-Dimensional TiO2/Bi2WO6 Hierarchical Heterostructure with Enhanced Visible Photocatalytic Activity. Nano-Micro Lett. 2014, 9 (2), 65–68. https://doi.org/10.1049/mnl.2013.0546.Suche in Google Scholar

Received: 2025-09-03
Accepted: 2025-10-29
Published Online: 2025-11-11

© 2025 IUPAC & De Gruyter

Heruntergeladen am 14.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0607/html?lang=de
Button zum nach oben scrollen