Abstract
Recent advancements in soft robotics have catalyzed significant progress in smart materials research, positioning hydrogel-based actuators as promising candidates for bioinspired soft robotic systems owing to their tunable mechanical properties and inherent flexibility. A central challenge lies in balancing the retention of desirable mechanical properties with achieving high responsiveness in hydrogel-based soft robotic devices. Entangled polymer networks have emerged as a groundbreaking class of materials for soft actuators, offering distinctive mechanical behavior and precisely adjustable responsiveness. This review aims to establish design principles for engineering soft actuators with tailored functionalities by elucidating the underlying mechanisms governing controlled chain entanglement dynamics during material processing. Furthermore, current technical limitations and future research directions are examined from a materials science perspective. This review provides guidance for the design and fabrication of soft actuators with desired properties through a rational route involving controlled chain entanglement.
Funding source: Innovation and Entrepreneurship Team of Jiangsu Province
Award Identifier / Grant number: JSSCTD202241
Funding source: the National Natural Science Foundation of China
Award Identifier / Grant number: 22120102001
Acknowledgments
This work was supported by the National Natural Science Foundation of China (grant no. 22120102001) and the Innovation and Entrepreneurship Team of Jiangsu Province (grant no. JSSCTD202241). In addition, the work is sponsored by the interdisciplinary platform of science and engineering at China University of Mining and Technology.
- 
Research ethics: Not applicable. 
- 
Informed consent: Not applicable. 
- 
Author contributions: Zhenfang Cheng and Qingyu Gao conceived the ideas and wrote the manuscript. Qingyu Gao and Ling Yuan supervised the research, and wrote the manuscript. Meng Zhang and Hui Wang analyzed and post-proofread the content in the manuscript. Yinghua Xie and Qizhai Sha pre-sorted and summarized the literature in the manuscript. Qingyu Gao defined the topic, designed the structural framework, and proofread the final version of the manuscript. 
- 
Use of Large Language Models, AI and Machine Learning Tools: None declared. 
- 
Conflict of interest: The author states no conflict of interest. 
- 
Research funding: This work was supported by the National Natural Science Foundation of China (grant no. 22120102001) and the Innovation and Entrepreneurship Team of Jiangsu Province (grant no. JSSCTD202241). In addition, the work is sponsored by the interdisciplinary platform of science and engineering at China University of Mining and Technology. 
- 
Data availability: Not applicable. 
References
1. Dickinson, M. H.; Farley, C. T.; Full, R. J.; Koehl, M. A. R.; Kram, R.; Lehman, S. How Animals Move: An Integrative View. Science 2000, 288 (5463), 100–106. https://doi.org/10.1126/science.288.5463.100.Suche in Google Scholar PubMed
2. Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today 2020, 36, 102–124. https://doi.org/10.1016/j.mattod.2019.12.026.Suche in Google Scholar
3. Mredha, M. T. I.; Jeon, I. Biomimetic Anisotropic Hydrogels: Advanced Fabrication Strategies, Extraordinary Functionalities, and Broad Applications. Prog. Mater. Sci. 2022, 124, 100870. https://doi.org/10.1016/j.pmatsci.2021.100870.Suche in Google Scholar
4. Trivedi, D.; Rahn, C. D.; Kier, W. M.; Walker, I. D. Soft Robotics: Biological Inspiration, State of the Art, and Future Research. Appl. Bionics Biomech. 2008, 5 (3), 520417. https://doi.org/10.1080/11762320802557865.Suche in Google Scholar
5. Kim, S.; Laschi, C.; Trimmer, B. Soft Robotics: A Bioinspired Evolution in Robotics. Trends Biotechnol. 2013, 31 (5), 287–294. https://doi.org/10.1016/j.tibtech.2013.03.002.Suche in Google Scholar PubMed
6. Majidi, C. Soft Robotics: A Perspective – Current Trends and Prospects for the Future. Soft Robot. 2014, 1 (1), 5–11. https://doi.org/10.1089/soro.2013.0001.Suche in Google Scholar
7. Hawkes, E. W.; Blumenschein, L. H.; Greer, J. D.; Okamura, A. M. A Soft Robot that Navigates its Environment Through Growth. Sci. Robot. 2017, 2 (8), eaan3028. https://doi.org/10.1126/scirobotics.aan3028.Suche in Google Scholar PubMed
8. Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-Walking Gel. Adv. Mater. 2007, 19 (21), 3480–3484. https://doi.org/10.1002/adma.200700625.Suche in Google Scholar
9. Laschi, C.; Cianchetti, M.; Mazzolai, B.; Margheri, L.; Follador, M.; Dario, P. Soft Robot Arm Inspired by the Octopus. Adv. Robot. 2012, 26 (7), 709–727. https://doi.org/10.1163/156855312X626343.Suche in Google Scholar
10. Rich, S. I.; Wood, R. J.; Majidi, C. Untethered Soft Robotics. Nat. Electron. 2018, 1 (2), 102–112. https://doi.org/10.1038/s41928-018-0024-1.Suche in Google Scholar
11. Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; Xu, Y.; Fan, H.; Chen, Z.; Song, W.; Yang, W.; Pan, B.; Hou, J.; Zou, W.; He, S.; Yang, X.; Mao, G.; Jia, Z.; Zhou, H.; Li, T.; Qu, S.; Xu, Z.; Huang, Z.; Luo, Y.; Xie, T.; Gu, J.; Zhu, S.; Yang, W. Self-Powered Soft Robot in the Mariana Trench. Nature 2021, 591 (7848), 66–71. https://doi.org/10.1038/s41586-020-03153-z.Suche in Google Scholar PubMed
12. Zhang, Y.; Zhang, N.; Hingorani, H.; Ding, N.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G.; Ge, Q. Soft Robots: Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3d Printing. Adv. Funct. Mater. 2019, 29 (15), 1970098. https://doi.org/10.1002/adfm.201970098.Suche in Google Scholar
13. Ji, X.; Liu, X.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An Autonomous Untethered Fast Soft Robotic Insect Driven by Low-Voltage Dielectric Elastomer Actuators. Sci. Robot. 2019, 4 (37), eaaz6451. https://doi.org/10.1126/scirobotics.aaz6451.Suche in Google Scholar PubMed
14. Lu, X.; Guo, S.; Tong, X.; Xia, H.; Zhao, Y. Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators. Adv. Mater. 2017, 29 (28), 1606467. https://doi.org/10.1002/adma.201606467.Suche in Google Scholar PubMed
15. Calvert, P. Hydrogels for Soft Machines. Adv. Mater. 2009, 21 (7), 743–756. https://doi.org/10.1002/adma.200800534.Suche in Google Scholar
16. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to pH-Responsive Drug Delivery. Drug Discov. Today 2002, 7 (10), 569–579. https://doi.org/10.1016/S1359-6446(02)02255-9.Suche in Google Scholar PubMed
17. Bashir, N.; Leathard, A. S.; Mchugh, M.; Hoffman, I.; Shaon, F.; Belgodere, J. A.; Taylor, A. F.; Pojman, J. A. On the Use of Modelling Antagonistic Enzymes to Aid in Temporal Programming of pH and PVA–Borate Gelation. Mol. Syst. Des. Eng. 2024, 9 (4), 372–381. https://doi.org/10.1039/D3ME00138E.Suche in Google Scholar
18. Hu, G.; Bounds, C.; Pojman, J. A.; Taylor, A. F. Time-Lapse Thiol-Acrylate Polymerization Using a ph Clock Reaction. J. Polym. Sci. Pol. Chem. 2010, 48 (13), 2955–2959. https://doi.org/10.1002/pola.24088.Suche in Google Scholar
19. Sharma, C.; Maity, I.; Walther, A. pH Feedback Systems to Program Autonomous Self-Assembly and Material Lifecycles. Chem. Commun. 2022, 60 (20), 11398–11405. https://doi.org/10.1002/anie.202017003.Suche in Google Scholar PubMed PubMed Central
20. Nan, M.; Guo, K.; Jia, T.; Wang, G.; Liu, S. Novel Acid-Driven Bioinspired Self-Resettable Bilayer Hydrogel Actuator Mimicking Natural Muscles. ACS Appl. Mater. Interfaces 2024, 16. https://doi.org/10.1021/acsami.3c16500.Suche in Google Scholar PubMed
21. Wang, G.; Liu, Y.; Liu, Y.; Xia, N.; Zhou, W.; Gao, Q.; Liu, S. The Non-Equilibrium Self-Assembly of Amphiphilic Block Copolymers Driven by a pH Oscillator. Colloids Surf. A 2017, 529. https://doi.org/10.1016/j.colsurfa.2017.06.078.Suche in Google Scholar
22. Li, Y.; Tanaka, T. Phase Transitions of Gels. Annu. Rev. Mater. Res. 1992, 22 (22), 243–277. https://doi.org/10.1146/annurev.ms.22.080192.001331.Suche in Google Scholar
23. Liu, Z.; Zeng, H.; Yang, K.; Luo, D. Thermo- and Chemical-Triggered Overhand and Reef Knots Based on Liquid Crystal Gels. J. Mater. Chem. C 2021, 9 (40), 14154–14160. https://doi.org/10.1039/D1TC03615G.Suche in Google Scholar
24. Palacci, J.; Sacanna, S.; Steinberg, A. P.; Pine, D. J.; Chaikin, P. M. Living Crystals of Light-Activated Colloidal Surfers. Science 2013, 339 (6122), 936–940. https://doi.org/10.1126/science.1230020.Suche in Google Scholar PubMed
25. Nemati, Y.; Yang, Q.; Sohrabi, F.; Timonen, J. V. I.; Sánchez-Somolinos, C.; Honkanen, M.; Zeng, H.; Priimagi, A. Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation. ACS Appl. Mater. Interfaces 2025, 17 (3), 5316–5325. https://doi.org/10.1021/acsami.4c14704.Suche in Google Scholar PubMed PubMed Central
26. Gelebart, A. H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E. W.; Selinger, R. L. B.; Broer, D. J. Making Waves in a Photoactive Polymer Film. Nature 2017, 546 (7660), 632–636. https://doi.org/10.1038/nature22987.Suche in Google Scholar PubMed PubMed Central
27. Sarkar, A.; Swinkels, P. J. M.; Duttenhofer, L.; Besenius, P.; Walther, A. Photoactivated Enzymatic Reaction Network Enables Spatiotemporal Programming of Thiol/Disulfide Redox Systems. Angew. Chem., Int. Ed. 2025, 64 (25), e202503822. https://doi.org/10.1002/anie.202503822.Suche in Google Scholar PubMed PubMed Central
28. Zhao, Y.; Liu, Z.; Shi, P.; Chen, C.; Alsaid, Y.; Yan, Y.; He, X. Antagonistic-Contracting High-Power Photo-Oscillators for Multifunctional Actuations. Nat. Mater. 2025, 24 (1), 116–124. https://doi.org/10.1038/s41563-024-02035-3.Suche in Google Scholar PubMed
29. Yang, J.; Pi, H.; Deng, Z.; Guo, H.; Shou, W.; Zhang, H.; Zeng, H. Feedback Regulated Opto-Mechanical Soft Robotic Actuators. Cell Rep. Phys. Sci. 2025, 6 (7), 102686. https://doi.org/10.1016/j.xcrp.2025.102686.Suche in Google Scholar
30. Xu, C.; Stiubianu, G. T.; Gorodetsky, A. A. Adaptive Infrared-Reflecting Systems Inspired by Cephalopods. Science 2018, 359 (6383), 1495–1500. https://doi.org/10.1126/science.aar5191.Suche in Google Scholar PubMed
31. Li, N.; Yu, Q.; Duan, S.; Du, Y.; Shi, X.; Li, X.; Jiao, T.; Qin, Z.; He, X. Anti-Swelling, High-Strength, Anisotropic Conductive Hydrogel with Excellent Biocompatibility for Implantable Electronic Tendon. Adv. Funct. Mater. 2024, 34 (12), 2309500. https://doi.org/10.1002/adfm.202309500.Suche in Google Scholar
32. Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X. Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water. Nat. Commun. 2017, 8 (1), 14230. https://doi.org/10.1038/ncomms14230.Suche in Google Scholar PubMed PubMed Central
33. Keplinger, C.; Sun, J.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, Transparent, Ionic Conductors. Science 2013, 341 (6149), 984–987. https://doi.org/10.1126/science.1240228.Suche in Google Scholar PubMed
34. Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated Wound Healing by Injectable Microporous Gel Scaffolds Assembled from Annealed Building Blocks. Nat. Mater. 2015, 14 (7), 737–744. https://doi.org/10.1038/nmat4294.Suche in Google Scholar PubMed PubMed Central
35. Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H. p.; Lippens, E.; Duda, G. N.; Mooney, D. J. Hydrogels with Tunable Stress Relaxation Regulate Stem Cell Fate and Activity. Nat. Mater. 2016, 15 (3), 326–334. https://doi.org/10.1038/nmat4489.Suche in Google Scholar PubMed PubMed Central
36. Seliktar, D. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science 2012, 336 (6085), 1124–1128. https://doi.org/10.1126/science.1214804.Suche in Google Scholar PubMed
37. Peppas, N. A. Hydrogels in Medicine and Pharmacy; CRC Press: Boca Raton, FL, 1986.Suche in Google Scholar
38. Li, J.; Mooney, D. J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1 (12), 16071. https://doi.org/10.1038/natrevmats.2016.71.Suche in Google Scholar PubMed PubMed Central
39. Yoshida, R. Design of Self-Oscillating Gels and Application to Biomimetic Actuators. Sensors 2010, 10 (3), 1810–1822. https://doi.org/10.3390/s100301810.Suche in Google Scholar PubMed PubMed Central
40. Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Self-Oscillating Gel Actuator for Chemical Robotics. Adv. Robot. 2008, 22 (12), 1329–1342. https://doi.org/10.1163/156855308X344855.Suche in Google Scholar
41. Yashin, V. V.; Balazs, A. C. Theoretical and Computational Modeling of Self-Oscillating Polymer Gels. J. Chem. Phys. 2007, 126 (12). https://doi.org/10.1063/1.2672951.Suche in Google Scholar PubMed
42. Yoshida, R. 9 – Self-Oscillating Polymer Gels as Novel Biomimetic Materials. In Biomimetic Technologies; Ngo, T. D., Ed.; Woodhead Publishing: Cambridge, 2015; pp 181–198.10.1016/B978-0-08-100249-0.00009-4Suche in Google Scholar
43. Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Active Polymer Gel Actuators. Int. J. Mol. Sci. 2010, 52–66. https://doi.org/10.3390/ijms11010052.Suche in Google Scholar PubMed PubMed Central
44. Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. A Chemo-Mechanical Rotational Actuator Driven by BZ Reaction. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006; pp. 1160–1165.10.1109/BIOROB.2006.1639249Suche in Google Scholar
45. Ren, L.; Wang, L.; Gao, Q.; Teng, R.; Xu, Z.; Wang, J.; Pan, C.; Epstein, I. R. Programmed Locomotion of an Active Gel Driven by Spiral Waves. Angew. Chem., Int. Ed. 2020, 59 (18), 7106–7112. https://doi.org/10.1002/anie.202000110.Suche in Google Scholar PubMed
46. Wang, J.; Ren, L.; Teng, R.; Epstein, I. R.; Wang, H.; Zhang, M.; Yuan, L.; Gao, Q. Rotational Locomotion of an Active Gel Driven by Internal Chemical Signals. J. Phys. Chem. Lett. 2021, 12 (50), 11987–11991. https://doi.org/10.1021/acs.jpclett.1c03128.Suche in Google Scholar PubMed
47. Yu, H.; Ren, L.; Wang, Y.; Wang, H.; Zhang, M.; Pan, C.; Yuan, L.; Zhang, J.; Epstein, I. R.; Gao, Q. Chiral Locomotion Transitions of an Active Gel and Their Chemomechanical Origin. J. Am. Chem. Soc. 2025, 147 (6), 5182–5188. https://doi.org/10.1021/jacs.4c15550.Suche in Google Scholar PubMed
48. Yoshida, R.; Takahashi, T.; Yamaguchi, T.; Ichijo, H. Self-Oscillating Gel. J. Am. Chem. Soc. 1996, 118 (21), 5134–5135. https://doi.org/10.1021/ja9602511.Suche in Google Scholar
49. Takeoka, Y.; Watanabe, M.; Yoshida, R. Self-Sustaining Peristaltic Motion on the Surface of a Porous Gel. J. Am. Chem. Soc. 2003, 125 (44), 13320–13321. https://doi.org/10.1021/ja036904c.Suche in Google Scholar PubMed
50. Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Control of the Dynamic Motion of a Gel Actuator Driven by the Belousov-Zhabotinsky Reaction. Macromol. Rapid Commun. 2008, 29 (5), 401–405. https://doi.org/10.1002/marc.200700717.Suche in Google Scholar
51. Lu, X.; Ren, L.; Gao, Q.; Zhao, Y.; Wang, S.; Yang, J.; Epstein, I. R. Photophobic and Phototropic Movement of a Self-Oscillating Gel. Chem. Commun. 2013, 49 (70), 7690–7692. https://doi.org/10.1039/C3CC44480E.Suche in Google Scholar
52. Teng, R.; Gao, Q.; Yuan, L.; Ren, L.; Wang, J.; Wang, Y.; Epstein, I. R. Heterogeneity-Driven Collective-Motion Patterns of Active Gels. Cell Rep. Phys. Sci. 2022, 3 (6), 100933. https://doi.org/10.1016/j.xcrp.2022.100933.Suche in Google Scholar
53. Ren, L.; She, W.; Gao, Q.; Pan, C.; Ji, C.; Epstein, I. R. Retrograde and Direct Wave Locomotion in a Photosensitive Self-Oscillating Gel. Angew. Chem., Int. Ed. 2016, 55 (46), 14301–14305. https://doi.org/10.1002/anie.201608367.Suche in Google Scholar PubMed
54. Ren, L.; Yuan, L.; Gao, Q.; Teng, R.; Wang, J.; Epstein, I. R. Chemomechanical Origin of Directed Locomotion Driven by Internal Chemical Signals. Sci. Adv., 6 (18), eaaz9125. https://doi.org/10.1126/sciadv.aaz9125.Suche in Google Scholar PubMed PubMed Central
55. Wang, L.; Yu, Z.; Gao, Q.; Wang, H.; Ren, L.; Ji, C.; Epstein, I. R. Capillarity-Induced Propagation Reversal of Chemical Waves in a Self-Oscillating Gel. J. Phys. Chem. A 2020, 124 (18), 3530–3534. https://doi.org/10.1021/acs.jpca.0c01087.Suche in Google Scholar PubMed
56. Yang, F.; Zhao, J.; Koshut, W. J.; Watt, J.; Riboh, J. C.; Gall, K.; Wiley, B. J. A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage. Adv. Funct. Mater. 2020, 30 (36), 2003451. https://doi.org/10.1002/adfm.202003451.Suche in Google Scholar
57. Wang, J.; Tang, F.; Yao, C.; Li, L. Low Hysteresis Hydrogel Induced by Spatial Confinement. Adv. Funct. Mater. 2023, 33 (23), 2214935. https://doi.org/10.1002/adfm.202214935.Suche in Google Scholar
58. Zhong, M.; Wang, R.; Kawamoto, K.; Olsen, B. D.; Johnson, J. A. Quantifying the Impact of Molecular Defects on Polymer Network Elasticity. Science 2016, 353 (6305), 1264–1268. https://doi.org/10.1126/science.aag0184.Suche in Google Scholar PubMed
59. Yang, C.; Yin, T.; Suo, Z. Polyacrylamide Hydrogels. I. Network Imperfection. J. Mech. Phys. Solid. 2019, 131, 43–55. https://doi.org/10.1016/j.jmps.2019.06.018.Suche in Google Scholar
60. Lin, S.; Zhao, X. Fracture of Polymer Networks with Diverse Topological Defects. Phys. Rev. E 2020, 102 (5), 52503. https://doi.org/10.1103/PhysRevE.102.052503.Suche in Google Scholar PubMed PubMed Central
61. Naficy, S.; Brown, H. R.; Razal, J. M.; Spinks, G. M.; Whitten, P. G. Progress Toward Robust Polymer Hydrogels. Aust. J. Chem. 2011, 64, 1007–1025. https://doi.org/10.1071/CH11156.Suche in Google Scholar
62. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15 (14), 1155–1158. https://doi.org/10.1002/adma.200304907.Suche in Google Scholar
63. Gong, J. P. Why are Double Network Hydrogels so Tough? Soft Matter 2010, 6 (12), 2583–2590. https://doi.org/10.1039/B924290B.Suche in Google Scholar
64. Huang, T.; Xu, H.; Jiao, K.; Zhu, L.; Brown, H.; Wang, H. A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel. Adv. Mater. 2007, 19 (12), 1622–1626. https://doi.org/10.1002/adma.200602533.Suche in Google Scholar
65. Wang, X.; Chan, K.; Lu, W.; Ding, T.; Ng, S. W. L.; Cheng, Y.; Li, T.; Hong, M.; Tee, B. C. K.; Ho, G. W. Macromolecule Conformational Shaping for Extreme Mechanical Programming of Polymorphic Hydrogel Fibers. Nat. Commun. 2022, 13 (1), 3369. https://doi.org/10.1038/s41467-022-31047-3.Suche in Google Scholar PubMed PubMed Central
66. Sun, Y.; Gao, G.; Du, G.; Cheng, Y.; Fu, J. Super Tough, Ultrastretchable, and Thermoresponsive Hydrogels with Functionalized Triblock Copolymer Micelles as Macro-Cross-Linkers. ACS Macro Lett. 2014, 3 (5), 496–500. https://doi.org/10.1021/mz500221j.Suche in Google Scholar PubMed
67. Liu, S. The Future of Free Radical Polymerizations. Chem. Mater. 2024, 36 (4), 1779–1780. https://doi.org/10.1021/acs.chemmater.4c00312.Suche in Google Scholar
68. Okumura, Y.; Ito, K. The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-Links. Adv. Mater. 2001, 13 (7), 485–487. https://doi.org/10.1002/1521-4095(200104)13:7<485:AID-ADMA485>3.0.CO;2-T.10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-TSuche in Google Scholar
69. Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough Hydrogels with Rapid Self-Reinforcement. Science 2021, 372 (6546), 1078–1081. https://doi.org/10.1126/science.aaz6694.Suche in Google Scholar
70. Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, Fatigue, and Friction of Polymers in which Entanglements Greatly Outnumber Cross-Links. Science 2021, 374 (6564), 212–216. https://doi.org/10.1126/science.abg6320.Suche in Google Scholar
71. Liu, D.; Weng, K.; Lu, S.; Li, F.; Abudukeremu, H.; Zhang, L.; Yang, Y.; Hou, J.; Qiu, H.; Fu, Z.; Luo, X.; Duan, L.; Zhang, Y.; Zhang, H.; Li, J. Direct Optical Patterning of Perovskite Nanocrystals with Ligand Cross-Linkers. Sci. Adv. 2022, 8 (11), eabm8433. https://doi.org/10.1126/sciadv.abm8433.Suche in Google Scholar
72. Matsuda, T.; Kawakami, R.; Namba, R.; Nakajima, T.; Gong, J. P. Mechanoresponsive Self-Growing Hydrogels Inspired by Muscle Training. Science 2019, 363 (6426), 504–508. https://doi.org/10.1126/science.aau9533.Suche in Google Scholar PubMed
73. Shalaginov, M. Y.; An, S.; Zhang, Y.; Yang, F.; Su, P.; Liberman, V.; Chou, J. B.; Roberts, C. M.; Kang, M.; Rios, C.; Du, Q.; Fowler, C.; Agarwal, A.; Richardson, K. A.; Rivero-Baleine, C.; Zhang, H.; Hu, J.; Gu, T. Reconfigurable All-Dielectric Metalens with Diffraction-Limited Performance. Nat. Commun. 2021, 12 (1), 1225. https://doi.org/10.1038/s41467-021-21440-9.Suche in Google Scholar PubMed PubMed Central
74. Kamata, H.; Akagi, Y.; Kayasuga-Kariya, Y.; Chung, U.; Sakai, T. “Nonswellable” Hydrogel Without Mechanical Hysteresis. Science 2014, 343 (6173), 873–875. https://doi.org/10.1126/science.1247811.Suche in Google Scholar PubMed
75. Lin, X.; Wang, X.; Cui, H.; Ouyang, G.; Guo, H. A Universal Strategy for Preparing Tough and Smart Glassy Hydrogels. Chem. Eng. J. 2023, 457, 141280. https://doi.org/10.1016/j.cej.2023.141280.Suche in Google Scholar
76. Jiang, L.; Liu, C.; Mayumi, K.; Kato, K.; Yokoyama, H.; Ito, K. Highly Stretchable and Instantly Recoverable Slide-Ring Gels Consisting of Enzymatically Synthesized Polyrotaxane with Low Host Coverage. Chem. Mater. 2018, 30 (15), 5013–5019. https://doi.org/10.1021/acs.chemmater.8b01208.Suche in Google Scholar
77. Li, X.; Gong, J. P. Design Principles for Strong and Tough Hydrogels. Nat. Rev. Mater. 2024, 9 (6), 380–398. https://doi.org/10.1038/s41578-024-00672-3.Suche in Google Scholar
78. Norioka, C.; Inamoto, Y.; Hajime, C.; Kawamura, A.; Miyata, T. A Universal Method to Easily Design Tough and Stretchable Hydrogels. NPG Asia Mater. 2021, 13 (1), 34. https://doi.org/10.1038/s41427-021-00302-2.Suche in Google Scholar
79. Nian, G.; Kim, J.; Bao, X.; Suo, Z. Making Highly Elastic and Tough Hydrogels from Doughs. Adv. Mater. 2022, 34 (50), 2206577. https://doi.org/10.1002/adma.202206577.Suche in Google Scholar PubMed
80. Busse, W. F. The Physical Structure of Elastic Colloids. J. Phys. Chem. 1932, 36 (12), 2862–2879. https://doi.org/10.1021/j150342a002.Suche in Google Scholar
81. Mooney, M. A Theory of Large Elastic Deformation. J. Appl. Phys. 1940, 11 (9), 582–592. https://doi.org/10.1063/1.1712836.Suche in Google Scholar
82. Flory, P. J. Network Structure and the Elastic Properties of Vulcanized Rubber. Chem. Rev. 1944, 35 (1), 51–75. https://doi.org/10.1021/cr60110a002.Suche in Google Scholar
83. Buchdahl, R. Rheology of Thermoplastic Materials. I. Polystyrene. J. Colloid Sci. 1948, 3 (2), 87–98. https://doi.org/10.1016/0095-8522(48)90060-9.Suche in Google Scholar PubMed
84. Nielsen, L. E.; Buchdahl, R. Viscoelastic and Photoelastic Properties of Polystyrene Above its Softening Temperature. J. Colloid Sci. 1950, 5 (3), 282–294. https://doi.org/10.1016/0095-8522(50)90031-6.Suche in Google Scholar
85. Bueche, F. Viscosity, Self-Diffusion, and Allied Effects in Solid Polymers. J. Chem. Phys. 1952, 20 (12), 1959–1964. https://doi.org/10.1063/1.1700349.Suche in Google Scholar
86. Rouse, P. E. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. J. Chem. Phys. 1953, 21, 1272–1280. https://doi.org/10.1063/1.1699180.Suche in Google Scholar
87. Ferry, J. D.; Landel, R. F.; Williams, M. L. Extensions of the Rouse Theory of Viscoelastic Properties to Undiluted Linear Polymers. J. Appl. Phys. 1955, 26 (4), 359–362. https://doi.org/10.1063/1.1721997.Suche in Google Scholar
88. Zimm, B. H. Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss. J. Chem. Phys. 1956, 24 (2), 269–278. https://doi.org/10.1063/1.1742462.Suche in Google Scholar
89. Lodge, A. S. A Network Theory of Flow Birefringence and Stress in Concentrated Polymer Solutions. Trans. Faraday Soc. 1956, 52 (0), 120–130. https://doi.org/10.1039/TF9565200120.Suche in Google Scholar
90. Yamamoto, M. The Visco-Elastic Properties of Network Structure I. General Formalism. J. Phys. Soc. Jpn. 1956, 11 (4), 413–421. https://doi.org/10.1143/JPSJ.11.413.Suche in Google Scholar
91. Lodge, A. S. The Isotropy of Gaussian Molecular Networks and the Stress-Birefringence Relations for Rubberlike Materials Cross-Linked in Stressed States. Kolloid Z. 1960, 171 (1), 46–51. https://doi.org/10.1007/BF01520324.Suche in Google Scholar
92. Bagley, E. B.; West, D. C. Chain Entanglement and Non-Newtonian Flow. J. Appl. Phys. 1958, 29 (10), 1511–1512. https://doi.org/10.1063/1.1722979.Suche in Google Scholar
93. Gennes, D. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 1971, 55, 572–579. https://doi.org/10.1063/1.1675789.Suche in Google Scholar
94. Doi, M.; Edwards, S. F. Dynamics of Concentrated Polymer Systems. Part 1. Brownian Motion in the Equilibrium State. J. Chem. Soc. Faraday Trans. 1978, 74 (0), 1789–1801. https://doi.org/10.1039/F29787401789.Suche in Google Scholar
95. Kong, D.; Yang, M.; Zhang, X.; Du, Z.; Fu, Q.; Gao, X.; Gong, J. Control of Polymer Properties by Entanglement: A Review. Macromol. Mater. Eng. 2021, 306 (12), 2100536. https://doi.org/10.1002/mame.202100536.Suche in Google Scholar
96. Gennes, P. G. D. Scaling Concepts in Polymer Physics; Cornell University Press: New York, 1979.Suche in Google Scholar
97. Straube, E.; Urban, V.; Pyckhout-Hintzen, W.; Richter, D.; Glinka, C. J. Small-Angle Neutron Scattering Investigation of Topological Constraints and Tube Deformation in Networks. Phys. Rev. Lett. 1995, 74 (22), 4464–4467. https://doi.org/10.1103/PhysRevLett.74.4464.Suche in Google Scholar PubMed
98. Mcdermott, A. G.; Deslauriers, P. J.; Fodor, J. S.; Jones, R. L.; Snyder, C. R. Measuring Tie Chains and Trapped Entanglements in Semicrystalline Polymers. Macromolecules 2020, 53 (13), 5614–5626. https://doi.org/10.1021/acs.macromol.0c00132.Suche in Google Scholar PubMed PubMed Central
99. Wang, Z.; Schaller, M.; Petzold, A.; Saalwächter, K.; Thurn-Albrecht, T. How Entanglements Determine the Morphology of Semicrystalline Polymers. Proc. Natl. Acad. Sci. 2023, 120 (27), e2077604176. https://doi.org/10.1073/pnas.2217363120.Suche in Google Scholar PubMed PubMed Central
100. Jin, F.; Huang, Z.; Zheng, Y.; Sun, C.; Kafle, N.; Ma, J.; Pan, P.; Miyoshi, T. Impact of Entanglement on Folding of Semicrystalline Polymer During Crystallization. ACS Macro Lett. 2023, 12 (8), 1138–1143. https://doi.org/10.1021/acsmacrolett.3c00364.Suche in Google Scholar PubMed
101. Saalwächter, K. Proton Multiple-Quantum nmr for the Study of Chain Dynamics and Structural Constraints in Polymeric Soft Materials. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51 (1), 1–35. https://doi.org/10.1016/j.pnmrs.2007.01.001.Suche in Google Scholar
102. Kremer, K.; Grest, G. S. Dynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation. J. Chem. Phys. 1990, 92, 5057–5086. https://doi.org/10.1063/1.458541.Suche in Google Scholar
103. Everaers, R.; Sukumaran, S.; Grest, G.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Rheology and Microscopic Topology of Entangled Polymeric Liquids. Science 2004, 303, 823–826. https://doi.org/10.1126/science.1091215.Suche in Google Scholar PubMed
104. Murashima, T.; Taniguchi, T. Multiscale Lagrangian Fluid Dynamics Simulation for Polymeric Fluid. J. Polym. Sci. Part B: Polym. Phys. 2010, 48. https://doi.org/10.1002/polb.21975.Suche in Google Scholar
105. Murashima, T.; Taniguchi, T.; Yamamoto, R.; Yasuda, S. Multiscale Modeling for Polymeric Flow: Particle-Fluid Bridging Scale Methods. J. Phys. Soc. Jpn. 2013, 82, 012001–012015. https://doi.org/10.7566/JPSJ.82.012001.Suche in Google Scholar
106. Bartók, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J. R.; Csányi, G.; Ceriotti, M. Machine Learning Unifies the Modeling of Materials and Molecules. Sci. Adv. 2017, 3 (12), e1701816. https://doi.org/10.1126/sciadv.1701816.Suche in Google Scholar PubMed PubMed Central
107. Banerjee, A.; Hsu, H.; Kremer, K.; Kukharenko, O. Data-Driven Identification and Analysis of the Glass Transition in Polymer Melts. ACS Macro Lett. 2023, 12 (6), 679–684. https://doi.org/10.1021/acsmacrolett.2c00749.Suche in Google Scholar PubMed PubMed Central
108. Porter, R. S.; Johnson, J. F. The Entanglement Concept in Polymer Systems. Chem. Rev. 1966, 66 (1), 1–27. https://doi.org/10.1021/cr60239a001.Suche in Google Scholar
109. Qian, R. The Concept of Cohesional Entanglement. Macromol. Symp. 1997, 124 (1), 15–26. https://doi.org/10.1002/masy.19971240105.Suche in Google Scholar
110. Yalcin, D. How do Different Specimen Geometries Affect Tensile Test Results? ADMET Mater. Test. 2017.Suche in Google Scholar
111. Yang, J.; Illeperuma, W.; Suo, Z. Inelasticity Increases the Critical Strain for the Onset of Creases on Hydrogels. Extreme Mech. Lett. 2020, 40, 100966. https://doi.org/10.1016/j.eml.2020.100966.Suche in Google Scholar
112. Li, C.; Wang, Z.; Wang, Y.; He, Q.; Long, R.; Cai, S. Effects of Network Structures on the Fracture of Hydrogel. Extreme Mech. Lett. 2021, 49, 101495. https://doi.org/10.1016/j.eml.2021.101495.Suche in Google Scholar
113. Ridwan, R.; Prabowo, A. R.; Muhayat, N.; Putranto, T.; Sohn, J. M. Tensile Analysis and Assessment of Carbon and Alloy Steels Using Fe Approach as an Idealization of Material Fractures Under Collision and Grounding. Curved Layer. Struct. 2020, 7 (1), 188–198. https://doi.org/10.1515/cls-2020-0016.Suche in Google Scholar
114. Liu, P.; Zhang, Y.; Guan, Y.; Zhang, Y. Peptide-Crosslinked, Highly Entangled Hydrogels with Excellent Mechanical Properties but Ultra-Low Solid Content. Adv. Mater. 2023, 35 (13), 2210021. https://doi.org/10.1002/adma.202210021.Suche in Google Scholar PubMed
115. Zhong, D.; Wang, Z.; Xu, J.; Liu, J.; Xiao, R.; Qu, S.; Yang, W. A Strategy for Tough and Fatigue-Resistant Hydrogels via Loose Cross-Linking and Dense Dehydration-Induced Entanglements. Nat. Commun. 2024, 15 (1), 5896. https://doi.org/10.1038/s41467-024-50364-3.Suche in Google Scholar PubMed PubMed Central
116. Hua, M.; Wu, S.; Ma, Y.; Zhao, Y.; Chen, Z.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X.; He, X. Strong Tough Hydrogels via the Synergy of Freeze-Casting and Salting out. Nature 2021, 590 (7847), 594–599. https://doi.org/10.1038/s41586-021-03212-z.Suche in Google Scholar PubMed
117. Steck, J.; Kim, J.; Kutsovsky, Y.; Suo, Z. Multiscale Stress Deconcentration Amplifies Fatigue Resistance of Rubber. Nature 2023, 624 (7991), 303–308. https://doi.org/10.1038/s41586-023-06782-2.Suche in Google Scholar PubMed
118. Graessley, W. W.; Edwards, S. F. Entanglement Interactions in Polymers and the Chain Contour Concentration. Polymer 1981, 22 (10), 1329–1334. https://doi.org/10.1016/0032-3861(81)90231-7.Suche in Google Scholar
119. Aharoni, S. M. On Entanglements of Flexible and Rodlike Polymers. Macromolecules 1983, 16 (11), 1722–1728. https://doi.org/10.1021/ma00245a008.Suche in Google Scholar
120. Kavassalis, T. A.; Noolandi, J. New View of Entanglements in Dense Polymer Systems. Phys. Rev. Lett. 1987, 59 (23), 2674–2677. https://doi.org/10.1103/PhysRevLett.59.2674.Suche in Google Scholar PubMed
121. Frischknecht, A. L.; Milner, S. T. Linear Rheology of Binary Melts from a Phenomenological Tube Model of Entangled Polymers. J. Rheol. 2002, 46 (3), 671–684. https://doi.org/10.1122/1.1459445.Suche in Google Scholar
122. Liu, C.; He, J.; Ruymbeke, E. V.; Keunings, R.; Bailly, C. Evaluation of Different Methods for the Determination of the Plateau Modulus and the Entanglement Molecular Weight. Polymer 2006, 47 (13), 4461–4479. https://doi.org/10.1016/j.polymer.2006.04.054.Suche in Google Scholar
123. Wu, S. Dynamic Rheology and Molecular Weight Distribution of Insoluble Polymers: Tetrafluoroethylene-Hexafluoropropylene Copolymers. Macromolecules 1985, 18 (10), 2023–2030. https://doi.org/10.1021/ma00152a038.Suche in Google Scholar
124. Wasserman, S. H.; Graessley, W. W. Prediction of Linear Viscoelastic Response for Entangled Polyolefin Melts from Molecular Weight Distribution. Polym. Eng. Sci. 1996, 36, 852–861. https://doi.org/10.1002/pen.10472.Suche in Google Scholar
125. Guzmán, J. D.; Schieber, J. D.; Pollard, R. A Regularization-Free Method for the Calculation of Molecular Weight Distributions from Dynamic Moduli Data. Rheol. Acta 2005, 44 (4), 342–351. https://doi.org/10.1007/s00397-004-0414-3.Suche in Google Scholar
126. Larson, R. G.; Sridhar, T.; Leal, L. G.; Mckinley, G. H.; Likhtman, A. E.; Mcleish, T. C. B. Definitions of Entanglement Spacing and Time Constants in the Tube Model. J. Rheol. 2003, 47 (3), 809–818. https://doi.org/10.1122/1.1567750.Suche in Google Scholar
127. Wang, S.; Wang, S.; Halasa, A.; Hsu, W. L. Relaxation Dynamics in Mixtures of Long and Short Chains: Tube Dilation and Impeded Curvilinear Diffusion. Macromolecules 2003, 36 (14), 5355–5371. https://doi.org/10.1021/ma0210426.Suche in Google Scholar
128. Zhang, Y.; Merlitz, H.; Wu, C.; Cao, X. Activity-Triggered Rheological Strengthening and Toughening of Nanoparticle-Doped Supramolecular Gels. Macromolecules 2024, 57 (6), 2988–2997. https://doi.org/10.1021/acs.macromol.3c02488.Suche in Google Scholar
129. Zhang, E.; Bai, R.; Morelle, X. P.; Suo, Z. Fatigue Fracture of Nearly Elastic Hydrogels. Soft Matter 2018, 14 (18), 3563–3571. https://doi.org/10.1039/C8SM00460A.Suche in Google Scholar
130. Zheng, D.; Lin, S.; Ni, J.; Zhao, X. Fracture and Fatigue of Entangled and Unentangled Polymer Networks. Extreme Mech. Lett. 2022, 51, 101608. https://doi.org/10.1016/j.eml.2022.101608.Suche in Google Scholar
131. Lake, G. J.; Thomas, A. G.; Tabor, D. The Strength of Highly Elastic Materials. Proc. R. Soc. A – Math. Phys. 1967, 300 (1460), 108–119. https://doi.org/10.1098/rspa.1967.0160.Suche in Google Scholar
132. Zhao, X. Multi-Scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation into Stretchy Networks. Soft Matter 2014, 10 (5), 672–687. https://doi.org/10.1039/C3SM52272E.Suche in Google Scholar
133. Lin, S.; Liu, X.; Liu, J.; Yuk, H.; Loh, H.; Parada, G. A.; Settens, C.; Song, J.; Masic, A.; McKinley, G. H.; Zhao, X. Anti-Fatigue-Fracture Hydrogels. Sci. Adv. 2019, 5 (1), eaau8528. https://doi.org/10.1126/sciadv.aau8528.Suche in Google Scholar PubMed PubMed Central
134. Bao, B.; Zeng, Q.; Li, K.; Wen, J.; Zhang, Y.; Zheng, Y.; Zhou, R.; Shi, C.; Chen, T.; Xiao, C.; Chen, B.; Wang, T.; Yu, K.; Sun, Y.; Lin, Q.; He, Y.; Tu, S.; Zhu, L. Rapid Fabrication of Physically Robust Hydrogels. Nat. Mater. 2023, 22 (10), 1253–1260. https://doi.org/10.1038/s41563-023-01648-4.Suche in Google Scholar PubMed
135. Liu, X.; Ji, X.; Zhu, R.; Gu, J.; Liang, J. A Microphase-Separated Design Toward an All-Round Ionic Hydrogel with Discriminable and Anti-Disturbance Multisensory Functions. Adv. Mater. 2024, 36 (15), 2309508. https://doi.org/10.1002/adma.202309508.Suche in Google Scholar PubMed
136. Lin, S.; Liu, J.; Liu, X.; Zhao, X. Muscle-Like Fatigue-Resistant Hydrogels by Mechanical Training. Proc. Natl. Acad. Sci. 2019, 116 (21), 10244–10249. https://doi.org/10.1073/pnas.1903019116.Suche in Google Scholar PubMed PubMed Central
137. Zhao, X.; Chen, X.; Yuk, H.; Lin, S.; Liu, X.; Parada, G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem. Rev. 2021, 121 (8), 4309–4372. https://doi.org/10.1021/acs.chemrev.0c01088.Suche in Google Scholar PubMed PubMed Central
138. Dragan, E. S. Design and Applications of Interpenetrating Polymer Network Hydrogels. A Review. Chem. Eng. J. 2014, 243, 572–590. https://doi.org/10.1016/j.cej.2014.01.065.Suche in Google Scholar
139. Heskins, M.; Guillet, J. E. Solution Properties of Poly(n-Isopropylacrylamide). J. Macromol. Sci. A 1968, 2 (8), 1441–1455. https://doi.org/10.1080/10601326808051910.Suche in Google Scholar
140. Zhao, Y.; Xuan, C.; Qian, X.; Alsaid, Y.; Hua, M.; Jin, L.; He, X. Soft Phototactic Swimmer Based on Self-Sustained Hydrogel Oscillator. Sci. Robot. 2019, 4 (33), eaax7112. https://doi.org/10.1126/scirobotics.aax7112.Suche in Google Scholar PubMed
141. Qin, H.; Zhang, T.; Li, N.; Cong, H. P.; Yu, S. H. Anisotropic and Self-Healing Hydrogels with Multi-Responsive Actuating Capability. Nat. Commun. 2019, 10 (1). https://doi.org/10.1038/s41467-019-10243-8.Suche in Google Scholar PubMed PubMed Central
142. Sarkar, A.; Dúzs, B.; Walther, A. Fuel-Driven Enzymatic Reaction Networks to Program Autonomous Thiol/Disulfide Redox Systems. J. Am. Chem. Soc. 2024, 146 (15), 10281–10285. https://doi.org/10.1021/jacs.4c02680.Suche in Google Scholar PubMed
143. Li, L.; Scheiger, J. M.; Levkin, P. A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31 (26), 1807333. https://doi.org/10.1002/adma.201807333.Suche in Google Scholar PubMed PubMed Central
144. Yang, H.; Leow, W. R.; Wang, T.; Wang, J.; Yu, J.; He, K.; Qi, D.; Wan, C.; Chen, X. 3d Printed Photoresponsive Devices Based on Shape Memory Composites. Adv. Mater. 2017, 29 (33), 1701627. https://doi.org/10.1002/adma.201701627.Suche in Google Scholar PubMed
145. Wang, Y.; Li, M.; Chang, J.; Aurelio, D.; Li, W.; Kim, B. J.; Kim, J. H.; Liscidini, M.; Rogers, J. A.; Omenetto, F. G. Light-Activated Shape Morphing and Light-Tracking Materials Using Biopolymer-Based Programmable Photonic Nanostructures. Nat. Commun. 2021, 12 (1), 1651. https://doi.org/10.1038/s41467-021-21764-6.Suche in Google Scholar PubMed PubMed Central
146. Cai, G.; Ciou, J.; Liu, Y.; Jiang, Y.; Lee, P. S. Leaf-Inspired Multiresponsive Mxene-Based Actuator for Programmable Smart Devices. Sci. Adv. 2019, 5 (7), eaaw7956. https://doi.org/10.1126/sciadv.aaw7956.Suche in Google Scholar PubMed PubMed Central
147. Li, C.; Iscen, A.; Sai, H.; Sato, K.; Sather, N. A.; Chin, S. M.; Álvarez, Z.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Supramolecular–Covalent Hybrid Polymers for Light-Activated Mechanical Actuation. Nat. Mater. 2020, 19 (8), 900–909. https://doi.org/10.1038/s41563-020-0707-7.Suche in Google Scholar PubMed
148. Wang, W.; Liu, Y.; Liu, Y.; Han, B.; Wang, H.; Han, D.; Wang, J.; Zhang, Y.; Sun, H. Direct Laser Writing of Superhydrophobic pdms Elastomers for Controllable Manipulation via Marangoni Effect. Adv. Funct. Mater. 2017, 27 (44), 1702946. https://doi.org/10.1002/adfm.201702946.Suche in Google Scholar
149. Li, M.; Wang, Y.; Chen, A.; Naidu, A.; Napier, B. S.; Li, W.; Rodriguez, C. L.; Crooker, S. A.; Omenetto, F. G. Flexible Magnetic Composites for Light-Controlled Actuation and Interfaces. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (32), 8119–8124. https://doi.org/10.1073/pnas.1805832115.Suche in Google Scholar PubMed PubMed Central
150. Chen, P.; Ruan, Q.; Nasseri, R.; Zhang, H.; Xi, X.; Xia, H.; Xu, G.; Xie, Q.; Yi, C.; Sun, Z.; Shahsavan, H.; Zhang, W. Light-Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity. Adv. Sci. 2022, 9 (34), 2204730. https://doi.org/10.1002/advs.202204730.Suche in Google Scholar PubMed PubMed Central
151. Peng, X.; Wang, H. Shape Changing Hydrogels and their Applications as Soft Actuators. J. Polym. Sci. Part B: Polym. Phys. 2018, 56 (19), 1314–1324. https://doi.org/10.1002/polb.24724.Suche in Google Scholar
152. Chen, M.; Yao, B.; Kappl, M.; Liu, S.; Yuan, J.; Berger, R.; Zhang, F.; Butt, H.; Liu, Y.; Wu, S. Entangled Azobenzene-Containing Polymers with Photoinduced Reversible Solid-to-Liquid Transitions for Healable and Reprocessable Photoactuators. Adv. Funct. Mater. 2020, 30 (4), 1906752. https://doi.org/10.1002/adfm.201906752.Suche in Google Scholar
153. Li, D.; Zhan, W.; Zuo, W.; Li, L.; Zhang, J.; Cai, G.; Tian, Y. Elastic, Tough and Switchable Swelling Hydrogels with High Entanglements and Low Crosslinks for Water Remediation. Chem. Eng. J. 2022, 450, 138417. https://doi.org/10.1016/j.cej.2022.138417.Suche in Google Scholar
154. Feng, Y.; Wang, S.; Li, Y.; Ma, W.; Zhang, G.; Yang, M.; Li, H.; Yang, Y.; Long, Y. Entanglement in Smart Hydrogels: Fast Response Time, Anti-Freezing and Anti-Drying. Adv. Funct. Mater. 2023, 33 (21), 2211027. https://doi.org/10.1002/adfm.202211027.Suche in Google Scholar
155. Sun, J.; Ni, F.; Gu, J.; Si, M.; Liu, D.; Zhang, C.; Shui, X.; Xiao, P.; Chen, T. Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting. Adv. Mater. 2024, 36 (27), 2314175. https://doi.org/10.1002/adma.202314175.Suche in Google Scholar PubMed
156. Lee, B. P.; Konst, S. Novel Hydrogel Actuator Inspired by Reversible Mussel Adhesive Protein Chemistry. Adv. Mater. 2014, 26 (21), 3415–3419. https://doi.org/10.1002/adma.201306137.Suche in Google Scholar PubMed
157. Han, Z.; Wang, P.; Mao, G.; Yin, T.; Zhong, D.; Yiming, B.; Hu, X.; Jia, Z.; Nian, G.; Qu, S.; Yang, W. Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery. ACS Appl. Mater. Interfaces 2020, 12 (10), 12010–12017. https://doi.org/10.1021/acsami.9b21713.Suche in Google Scholar PubMed
158. Cheng, R.; Xu, M.; Zhang, X.; Jiang, J.; Zhang, Q.; Zhao, Y. Hydrogen Bonding Enables Polymer Hydrogels with pH-Induced Reversible Dynamic Responsive Behaviors. Angew. Chem., Int. Ed. 2023, 62 (23), e202302900. https://doi.org/10.1002/anie.202302900.Suche in Google Scholar PubMed
159. Scarpa, J. S.; Mueller, D. D.; Klotz, I. M. Slow Hydrogen-Deuterium Exchange in a Non-Alpha-Helical Polyamide. J. Am. Chem. Soc. 1967, 89 (24), 6024–6030. https://doi.org/10.1021/ja01000a006.Suche in Google Scholar
160. Pelton, R. H.; Chibante, P. Preparation of Aqueous Latices with n-Isopropylacrylamide. Colloids Surf. 1986, 20 (3), 247–256. https://doi.org/10.1016/0166-6622(86)80274-8.Suche in Google Scholar
161. Schild, H. G. Poly(n-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17 (2), 163–249. https://doi.org/10.1016/0079-6700(92)90023-R.Suche in Google Scholar
162. Wu, C.; Wang, X. Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Phys. Rev. Lett. 1998, 80 (18), 4092–4094. https://doi.org/10.1103/PhysRevLett.80.4092.Suche in Google Scholar
163. Hirotsu, S. Phase Transition of a Polymer Gel in Pure and Mixed Solvent Media. J. Phys. Soc. Jpn. 1987, 56 (1), 233–242. https://doi.org/10.1143/JPSJ.56.233.Suche in Google Scholar
164. Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(n-Isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Prog. Mater. Sci. 2021, 115, 100702. https://doi.org/10.1016/j.pmatsci.2020.100702.Suche in Google Scholar
165. Cho, Y. E.; Park, J.; Song, W. J.; Lee, M.; Sun, J. Solvent Engineering of Thermo-Responsive Hydrogels Facilitates Strong and Large Contractile Actuations. Adv. Mater. 2024, 36 (38), 2406103. https://doi.org/10.1002/adma.202406103.Suche in Google Scholar PubMed
166. Ye, H.; Wu, B.; Sun, S.; Wu, P. Self-Compliant Ionic Skin by Leveraging Hierarchical Hydrogen Bond Association. Nat. Commun. 2024, 15 (1), 885. https://doi.org/10.1038/s41467-024-45079-4.Suche in Google Scholar PubMed PubMed Central
167. Liu, Y.; Guan, G.; Li, Y.; Tan, J.; Cheng, P.; Yang, M.; Li, B.; Wang, Q.; Zhong, W.; Mequanint, K.; Zhu, C.; Xing, M. Gelation of Highly Entangled Hydrophobic Macromolecular Fluid for Ultrastrong Underwater in Situ Fast Tissue Adhesion. Sci. Adv. 2022, 8 (20), eabm9744. https://doi.org/10.1126/sciadv.abm9744.Suche in Google Scholar PubMed PubMed Central
168. Dhand, A. P.; Davidson, M. D.; Zlotnick, H. M.; Kolibaba, T. J.; Killgore, J. P.; Burdick, J. A. Additive Manufacturing of Highly Entangled Polymer Networks. Science 2024, 385 (6708), 566–572. https://doi.org/10.1126/science.adn6925.Suche in Google Scholar PubMed PubMed Central
169. Patil, V. P.; Tuazon, H.; Kaufman, E.; Chakrabortty, T.; Qin, D.; Dunkel, J.; Bhamla, M. S. Ultrafast Reversible Self-Assembly of Living Tangled Matter. Science 2023, 380 (6643), 392–398. https://doi.org/10.1126/science.ade7759.Suche in Google Scholar PubMed PubMed Central
170. Meng, X.; Qiao, Y.; Do, C.; Bras, W.; He, C.; Ke, Y.; Russell, T. P.; Qiu, D. Hysteresis-Free Nanoparticle-Reinforced Hydrogels. Adv. Mater. 2022, 34 (7), 2108243. https://doi.org/10.1002/adma.202108243.Suche in Google Scholar PubMed
171. Cheng, Z.; Yuan, L.; Wang, H.; Yu, H.; Zhang, M.; Epstein, I. R.; Gao, T.; Ren, L.; Gao, Q. Performance Comparison of Traditional, Nanopolymerized, and Entangled Belousov−Zhabotinsky Self-Oscillating Gels. Chemsystemschem 2025, 7, e202400060. https://doi.org/10.1002/syst.202400060.Suche in Google Scholar
172. Puza, F.; Zheng, Y.; Han, L.; Xue, L.; Cui, J. Physical Entanglement Hydrogels: Ultrahigh Water Content but Good Toughness and Stretchability. Polym. Chem. 2020, 11 (13), 2339–2345. https://doi.org/10.1039/D0PY00294A.Suche in Google Scholar
173. Kamiyama, Y.; Tamate, R.; Hiroi, T.; Samitsu, S.; Fujii, K.; Ueki, T. Highly Stretchable and Self-Healable Polymer Gels from Physical Entanglements of Ultrahigh–Molecular Weight Polymers. Sci. Adv., 8 (42), eadd226. https://doi.org/10.1126/sciadv.add0226.Suche in Google Scholar PubMed PubMed Central
174. Fu, L.; Li, L.; Bian, Q.; Xue, B.; Jin, J.; Li, J.; Cao, Y.; Jiang, Q.; Li, H. Cartilage-Like Protein Hydrogels Engineered via Entanglement. Nature 2023, 618 (7966), 740–747. https://doi.org/10.1038/s41586-023-06037-0.Suche in Google Scholar PubMed
175. Zhu, R.; Zhu, D.; Zheng, Z.; Wang, X. Tough Double Network Hydrogels with Rapid Self-Reinforcement and Low Hysteresis Based on Highly Entangled Networks. Nat. Commun. 2024, 15 (1), 1344. https://doi.org/10.1038/s41467-024-45485-8.Suche in Google Scholar PubMed PubMed Central
176. Zhang, G.; Steck, J.; Kim, J.; Ahn, C. H.; Suo, Z. Hydrogels of Arrested Phase Separation Simultaneously Achieve High Strength and Low Hysteresis. Sci. Adv. 2023, 9 (26), eadh7742. https://doi.org/10.1126/sciadv.adh7742.Suche in Google Scholar PubMed PubMed Central
177. Hou, X.; Huang, B.; Zhou, L.; Liu, S.; Kong, J.; He, C. An Amphiphilic Entangled Network Design Toward Ultratough Hydrogels. Adv. Mater. 2023, 35 (28), 2301532. https://doi.org/10.1002/adma.202301532.Suche in Google Scholar PubMed
178. Liang, Q.; Xia, X.; Sun, X.; Yu, D.; Huang, X.; Han, G.; Mugo, S. M.; Chen, W.; Zhang, Q. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. Adv. Sci. 2022, 9 (16), 2201059. https://doi.org/10.1002/advs.202201059.Suche in Google Scholar PubMed PubMed Central
179. Li, W.; Li, L.; Zheng, S.; Liu, Z.; Zou, X.; Sun, Z.; Guo, J.; Yan, F. Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation. Adv. Mater. 2022, 34 (28), 2203049. https://doi.org/10.1002/adma.202203049.Suche in Google Scholar PubMed
180. Wang, J.; Shao, Q.; Wang, W.; Ma, Z.; Wu, L.; Song, R.; Liang, H.; Dong, Y.; Tahir, M.; Hu, Z.; Huang, X.; He, L. Enhancing the Performance of Hydrogel Strain/Pressure Sensors via Gradient-Entanglement-Induced Surface Wrinkling Patterns. Chem. Eng. J. 2024, 498, 155679. https://doi.org/10.1016/j.cej.2024.155679.Suche in Google Scholar
181. Huey, D. J.; Hu, J. C.; Athanasiou, K. A. Unlike Bone, Cartilage Regeneration Remains Elusive. Science 2012, 338 (6109), 917–921. https://doi.org/10.1126/science.1222454.Suche in Google Scholar PubMed PubMed Central
182. Liu, J.; Lin, S.; Liu, X.; Qin, Z.; Yang, Y.; Zang, J.; Zhao, X. Fatigue-Resistant Adhesion of Hydrogels. Nat. Commun. 2020, 11 (1), 1071. https://doi.org/10.1038/s41467-020-14871-3.Suche in Google Scholar PubMed PubMed Central
183. Han, S.; Wu, Q.; Zhu, J.; Zhang, J.; Chen, A.; Su, S.; Liu, J.; Huang, J.; Yang, X.; Guan, L. Tough Hydrogel with High Water Content and Ordered Fibrous Structures as an Artificial Human Ligament. Mater. Horiz. 2023, 10 (3), 1012–1019. https://doi.org/10.1039/D2MH01299E.Suche in Google Scholar PubMed
184. Hu, P.; Madsen, J.; Skov, A. L. One Reaction to Make Highly Stretchable or Extremely Soft Silicone Elastomers from Easily Available Materials. Nat. Commun. 2022, 13 (1), 370. https://doi.org/10.1038/s41467-022-28015-2.Suche in Google Scholar PubMed PubMed Central
185. Xu, L.; Sun, D.; Tian, Y.; Sun, L.; Zhu, Z. Self-Rehydrating and Highly Entangled Hydrogel for Sustainable Daytime Passive Cooling. Chem. Eng. J. 2024, 479, 147795. https://doi.org/10.1016/j.cej.2023.147795.Suche in Google Scholar
186. He, Q.; Chang, Z.; Zhong, Y.; Chai, S.; Fu, C.; Liang, S.; Fang, G.; Pan, A. Highly Entangled Hydrogel Enables Stable Zinc Metal Batteries via Interfacial Confinement Effect. ACS Energy Lett. 2023, 8 (12), 5253–5263. https://doi.org/10.1021/acsenergylett.3c02139.Suche in Google Scholar
187. Liu, Z.; Deng, Z.; Davis, S.; Ciais, P. Monitoring Global Carbon Emissions in 2022. Nat. Rev. Earth Environ. 2023, 4 (4), 205–206. https://doi.org/10.1038/s43017-023-00406-z.Suche in Google Scholar PubMed PubMed Central
188. Li, J.; Wang, X.; Liang, D.; Xu, N.; Zhu, B.; Li, W.; Yao, P.; Jiang, Y.; Min, X.; Huang, Z.; Zhu, S.; Fan, S.; Zhu, J. A Tandem Radiative/Evaporative Cooler for Weather-Insensitive and High-Performance Daytime Passive Cooling. Sci. Adv. 2022, 8 (32), eabq0411. https://doi.org/10.1126/sciadv.abq0411.Suche in Google Scholar PubMed PubMed Central
189. Li, Q.; Chen, A.; Wang, D.; Zhao, Y.; Wang, X.; Jin, X.; Xiong, B.; Zhi, C. Tailoring the Metal Electrode Morphology via Electrochemical Protocol Optimization for Long-Lasting Aqueous Zinc Batteries. Nat. Commun. 2022, 13 (1), 3699. https://doi.org/10.1038/s41467-022-31461-7.Suche in Google Scholar PubMed PubMed Central
190. Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488 (7411), 294–303. https://doi.org/10.1038/nature11475.Suche in Google Scholar PubMed
© 2025 IUPAC & De Gruyter