Synthetic transformations of quinoline-3-carbaldehydes with ethanol as a green solvent
- 
            
            
        Vaishali
        , Swati Rani 
Abstract
Quinoline-3-carbaldehydes and their derivatives are recognized as starting precursors because of their broad range of synthetic versatility in organic chemistry. A diverse spectrum of interesting quinoline-based molecular architectures has been developed by the exploration of quinoline-3-carbaldehydes in the last years. In this context, ethanol-solvated methodologies demonstrate the exploration of quinoline-3-carbaldehydes towards the synthesis of quinoline and its scaffolds. This review covers the ethanol-solvated approaches for the development of quinoline derivatives through the synthetic exploration of quinoline-3-carbaldehydes.
- 
Research ethics: Not applicable. 
- 
Informed consent: Not applicable. 
- 
Author contributions: Vaishali: Writing original draft. Shubham Sharma*: Edit original draft and supervision. Swati Rani: formal analysis, Software. Pooja Sharma: Writing some part. Aaysha Pandey: Writing some part. Magdi E. A. Zaki: Visualization. Sobhi M. Gomha**: Supervision and validation. 
- 
Use of Large Language Models, AI and Machine Learning Tools: None declared. 
- 
Conflict of interest: The author states no conflict of interest. 
- 
Research funding: None declared. 
- 
Data availability: Not applicable. 
References
1. Logsdon, J. E. Ethanol. Kirk-Othmer Encyclopedia of Chemical Technology, 2004.10.1002/0471238961.0520080112150719.a01.pub2Suche in Google Scholar
2. Kumar, S.; Singh, N.; Prasad, R. Anhydrous Ethanol: A Renewable Source of Energy. Renew. Sustain. Energy Rev. 2010, 14 (7), 1830–1844; https://doi.org/10.1016/j.rser.2010.03.015.Suche in Google Scholar
3. Auge, J.; Betzemeier, B.; Cornils, B.; Curran, D. P.; Knochel, P.; Leitner, W.; Ublacker, G. A. Modern Solvents in Organic Synthesis; Springer: Berlin, Heidelberg, New York, Vol. 206, 2003.Suche in Google Scholar
4. Sheldon, R. A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7 (5), 267–278; https://doi.org/10.1039/b418069k.Suche in Google Scholar
5. Dagle, R. A.; Winkelman, A. D.; Ramasamy, K. K.; Lebarbier Dagle, V.; Weber, R. S. Ethanol as a Renewable Building Block for Fuels and Chemicals. Ind. Eng. Chem. Res. 2020, 59 (11), 4843–4853; https://doi.org/10.1021/acs.iecr.9b05729.Suche in Google Scholar
6. Amin, A.; Qadir, T.; Sharma, P. K.; Jeelani, I.; Abe, H. A Review on the Medicinal and Industrial Applications of N-Containing Heterocycles. Open Med. Chem. J. 2022, 16 (1); https://doi.org/10.2174/18741045-v16-e2209010.Suche in Google Scholar
7. Kucharski, D. J.; Jaszczak, M. K.; Boratyński, P. J. A Review of Modifications of Quinoline Antimalarials: Mefloquine and (Hydroxy) Chloroquine. Molecules 2022, 27 (3), 1003; https://doi.org/10.3390/molecules27031003.Suche in Google Scholar PubMed PubMed Central
8. Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. Adv. Microbiol. Infect. Dis. Publ. Health 2020, 14, 37–69; https://doi.org/10.1007/5584_2019_428.Suche in Google Scholar PubMed
9. Sharma, S.; Singh, K.; Singh, S. Synthetic Strategies for Quinoline Based Derivatives as Potential Bioactive Heterocycles. Curr. Org. Synth. 2023, 20 (6), 606–629; https://doi.org/10.2174/1570179420666221004143910.Suche in Google Scholar PubMed
10. Cai, Q.; Song, H.; Zhang, Y.; Zhu, Z.; Zhang, J.; Chen, J. Quinoline Derivatives in Discovery and Development of Pesticides. J. Agric. Food Chem. 2024, 72 (22), 12373–12386; https://doi.org/10.1021/acs.jafc.4c01582.Suche in Google Scholar PubMed
11. Meng, X.; Wang, S.; Zhu, M. Quinoline-Based Fluorescence Sensors; IntechOpen: Great Portland Street, London, 2012.10.5772/31771Suche in Google Scholar
12. Lewinska, G.; Sanetra, J.; Marszalek, K. W. Application of Quinoline Derivatives in Third-Generation Photovoltaics. J. Mater. Sci.: Mater. Electron. 2021, 32 (14), 18451–18465; https://doi.org/10.1007/s10854-021-06225-6.Suche in Google Scholar PubMed PubMed Central
13. Kumar, V.; Singh, K.; Sharma, S.; Singh, D.; Malakar, C. C.; Singh, V. SnCl 2-Mediated Heterocyclization Approach for the Synthesis of Benzisoxazole/Quinoline-Embedded β-Carboline Scaffolds. Org. Biomol. Chem. 2025, 23, 4782–4793; https://doi.org/10.1039/d5ob00299k.Suche in Google Scholar PubMed
14. Kumar, V.; Panchal, J.; Sharma, V.; Sharma, S.; Sharma, P.; Singh, V. Construction of Five-and Seven-Membered Rings Facilitated by Alkyne–Azide Functionality: Access to Quinoline Fused Triazolo-Azepines. Org. Biomol. Chem. 2025, 23 (4), 900–907; https://doi.org/10.1039/d4ob01442a.Suche in Google Scholar PubMed
15. Sharma, S.; Sharma, S.; Sharma, P.; Das, D. K.; K Vashistha, V.; Dhiman, J.; Sharma, R.; Kumar, R.; Singh, M. V.; Kumar, Y.; Kumar, Y. Magnetic Nanoparticle-Catalysed Synthesis of Quinoline Derivatives: A Green and Sustainable Method. Heliyon 2024, 10 (23); https://doi.org/10.1016/j.heliyon.2024.e40451.Suche in Google Scholar PubMed PubMed Central
16. Kumar, V., Sharma, S., Singh, V., Vaishali, Singh, D., Singh, D., & Malakar, C. C. Exploration of Synthetic Potential of Quinoline‐3‐Carbaldehydes. Eur. J. Org Chem. 2024, 27 (36), e202400456, https://doi.org/10.1002/ejoc.202400456.Suche in Google Scholar
17. Kumar, V.; Sharma, S.; Kumar Pandey, S.; Singh, V. Base‐Mediated Regioselective Synthesis of Pyrrolo [3, 4‐b] quinolin‐1‐one and Benzo [B] [1, 6] Naphthyridin‐1 (2H)‐One Derivatives from O‐Alkynyl Quinoline‐3‐carbonitriles and their Photophysical Properties. Eur. J. Org Chem. 2024, 27 (37), e202400582; https://doi.org/10.1002/ejoc.202400582.Suche in Google Scholar
18. Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R. L.; Azam, A. Antiprotozoal Activity of Chloroquinoline Based Chalcones. Eur. J. Med. Chem. 2011, 46 (5), 1897–1905; https://doi.org/10.1016/j.ejmech.2011.02.004.Suche in Google Scholar PubMed
19. Narayanachar; Dhumwad, S. D.; Suresh, D. K. Synthesis, Spectral Characterization and Biological Studies of Quinoline Based Ligands and their Transition Metal Complexes. Main Group Chem. 2012, 11 (2), 135–149; https://doi.org/10.3233/mgc-2012-0066.Suche in Google Scholar
20. Chioua, M.; Sucunza, D.; Soriano, E.; Hadjipavlou-Litina, D.; Alcázar, A.; Ayuso, I.; Oset-Gasque, M. J.; González, M. P.; Monjas, L.; Rodríguez-Franco, M. I.; Marco-Contelles, J.; Samadi, A.; Samadi, A. α-Aryl-N-alkyl Nitrones, as Potential Agents for Stroke Treatment: Synthesis, Theoretical Calculations, Antioxidant, Anti-inflammatory, Neuroprotective, and Brain–Blood Barrier Permeability Properties. J. Med. Chem. 2012, 55 (1), 153–168; https://doi.org/10.1021/jm201105a.Suche in Google Scholar PubMed
21. Praveena, K. S. S.; Shivaji Ramarao, E. V. V.; Murthy, N. Y. S.; Akkenapally, S.; Ganesh Kumar, C.; Kapavarapu, R.; Pal, S. Design of New Hybrid Template by Linking Quinoline, Triazole and Dihydroquinoline Pharmacophoric Groups: A Greener Approach to Novel Polyazaheterocycles as Cytotoxic Agents. Bioorg. Med. Chem. Lett. 2015, 25 (5), 1057–1063; https://doi.org/10.1016/j.bmcl.2015.01.012.Suche in Google Scholar PubMed
22. Basavarajaiah, S. M.; Mruthyunjayaswamy, B. H. M. Pharmacological Activities of Some 5-Substituted-3-Phenyl-Nβ-(Substituted-2-oxo-2H-pyrano [2, 3-b] Quinoline-3-Carbonyl)-1H-indole-2-Carboxyhydrazides. Der Pharm. Sin. 2021, 12 (5), 011.Suche in Google Scholar
23. Rathod, P. K.; Jonnalagadda, S.; Panaganti, L. A Simple and Efficient Synthesis of Benzofuroquinolines via the Decarboxylative Cross-Coupling. Tetrahedron Lett. 2021, 66, 152808; https://doi.org/10.1016/j.tetlet.2020.152808.Suche in Google Scholar
24. Alizadeh, A.; Moterassed, R.; Rostampoor, A. Efficient Synthesis of Highly Substituted N‐Arylamino Quinolone‐Based Pyrrolo [3, 4‐b] Pyridines and Pyrazolone‐Based Pyrrolo [3, 4‐b] Pyridines Through a One‐Pot Three‐Component Reaction. ChemistrySelect 2023, 8 (22), e202300634; https://doi.org/10.1002/slct.202300634.Suche in Google Scholar
25. Amiri, K.; Nayebzadeh, B.; Kamangar, M.; Babazadeh, M.; Ariafard, A.; Shiri, F.; Rominger, F.; Balalaie, S.; Balalaie, S. Synthesis of a Fused N-bridged [3.3. 1] Nonadiquinoline Multicyclic Skeleton via a Metal-Free Formal [4+2] Cycloaddition/Mannich/Dearomatization Domino Reaction. Green Chem. 2023, 25 (22), 9203–9208; https://doi.org/10.1039/d3gc03026a.Suche in Google Scholar
26. Kanani, M. B.; Patel, M. P. Facile Construction of Densely Functionalized Thiopyrano [2, 3-b] Quinolines via Three-component Reactions Catalyzed by L-Proline. RSC Adv. 2014, 4 (54), 28798–28801; https://doi.org/10.1039/c4ra05042h.Suche in Google Scholar
27. Jha, R. R.; Aggarwal, T.; Verma, A. K. Stereoselective Tandem Synthesis of Oxazolo-Fused Pyrroloquinolines from o-Alkynylaldehydes via Ag (I)-Catalyzed Regioselective 5-Exo-Dig Ring Closure. Tetrahedron Lett. 2014, 55 (16), 2603–2608; https://doi.org/10.1016/j.tetlet.2014.02.103.Suche in Google Scholar
28. Alizadeh, A.; Rostampoor, A.; Alipour, M.; Hajipour-Verdom, B.; Abdolmaleki, P. Ultrasound-Promoted Synthesis of Novel N-Arylamino-3, 5′-Biquinoline Derivatives: Their Applications in Live-Cell Imaging and in Vitro Anticancer Activity Evaluation. New J. Chem. 2023, 47 (5), 2479–2487; https://doi.org/10.1039/d2nj04444g.Suche in Google Scholar
29. Rezvanian, A.; Noorakhtar, F.; Zadsirjan, V.; Heravi, M. M. Synthesis of 1, 2-Dihydroacridines Based on Chloroquinoline-3-Carbaldehyde and Diketene Under Catalyst-Free Reaction. Monatsh. Chem. – Chem. Mon. 2023, 154 (6), 651–659; https://doi.org/10.1007/s00706-023-03064-5.Suche in Google Scholar
30. Shelar, D. P.; Rote, R. V.; Patil, S. R.; Jachak, M. N. Effects of Homogeneous Media, Binary Mixtures and Microheterogeneous Media on the Fluorescence and Fluorescence Probe Properties of Some Benzo [B] [1, 8] Naphthyridiens with HSA and BSA. Luminescence 2012, 27 (5), 398–413; https://doi.org/10.1002/bio.1364.Suche in Google Scholar PubMed
31. Kalinina, T. A.; Shatunova, D. V.; Glukhareva, T. V.; Morzherin, Y. Y. Synthesis of Condensed [1, 2, 3] triazolo-[5, 1-b] [1, 3, 4] Thiadiazepine Systems. Chem. Heterocycl. Compd. 2013, 49, 350–352; https://doi.org/10.1007/s10593-013-1255-8.Suche in Google Scholar
32. Huang, L.; Liu, F. M.; Dong, Z. Q. Synthesis of Novel Tricyclic 1, 5‐Benzothiazepine Derivatives Bearing Quinoline Moiety via [2+2] Cycloaddition Reaction. J. Heterocycl. Chem. 2014, 51 (5), 1516–1521; https://doi.org/10.1002/jhet.1808.Suche in Google Scholar
33. Sangshetti, J. N.; Khan, F. A. K.; Patil, R. H.; Marathe, S. D.; Gade, W. N.; Shinde, D. B. Biofilm Inhibition of Linezolid-Like Schiff Bases: Synthesis, Biological Activity, Molecular Docking and in Silico ADME Prediction. Bioorg. Med. Chem. Lett. 2015, 25 (4), 874–880; https://doi.org/10.1016/j.bmcl.2014.12.063.Suche in Google Scholar PubMed
34. Shaikh, A.; S Meshram, J. Facile Microwave-Assisted Synthesis and Pharmacological Appraisal of Bioactive Dihydropyrimidinone Derivatives. Curr. Microw. Chem. 2015, 2 (2), 166–172; https://doi.org/10.2174/2213335602666141217222008.Suche in Google Scholar
35. Ghanei, S.; Eshghi, H.; Lari, J.; Saadatmandzadeh, M. Synthesis and Docking Analysis of New 2-Chloro-3-((2, 2-Dimethylhydrazono) Methyl) Quinoline Derivatives as Non-nucleoside Human HIV-1 Reverse Transcriptase Inhibitors. J. Chem. Pharmaceut. Res. 2015, 7.Suche in Google Scholar
36. Kanani, M. B.; Patel, M. P. Design and Synthesis of New (Bis) Trifluoromethyl-Promoted N-aryl Biquinoline Derivatives as Antitubercular and Antimicrobial Agents. Med. Chem. Res. 2015, 24, 563–575; https://doi.org/10.1007/s00044-014-1140-8.Suche in Google Scholar
37. Cushing, T. D.; Hao, X.; Shin, Y.; Andrews, K.; Brown, M.; Cardozo, M.; Chen, Y.; Duquette, J.; Fisher, B.; Gonzalez-Lopez de Turiso, F.; He, X.; Henne, K. R.; Hu, Y. L.; Hungate, R.; Johnson, M. G.; Kelly, R. C.; Lucas, B.; McCarter, J. D.; McGee, L. R.; Medina, J. C.; San Miguel, T.; Mohn, D.; Pattaropong, V.; Pettus, L. H.; Reichelt, A.; Rzasa, R. M.; Seganish, J.; Tasker, A. S.; Wahl, R. C.; Wannberg, S.; Whittington, D. A.; Whoriskey, J.; Yu, G.; Zalameda, L.; Zhang, D.; Metz, D. P.; Metz, D. P. Discovery and in vivo Evaluation of (S)-N-(1-(7-Fluoro-2-(Pyridin-2-yl) Quinolin-3-yl) Ethyl)-9 H-Purin-6-Amine (AMG319) and Related PI3Kδ Inhibitors for Inflammation and Autoimmune Disease. J. Med. Chem. 2015, 58 (1), 480–511; https://doi.org/10.1021/jm501624r.Suche in Google Scholar PubMed
38. Fu, L.; Feng, X.; Wang, J. J.; Xun, Z.; Hu, J. D.; Zhang, J. J.; Zhao, Y. W.; Huang, Z. B.; Shi, D. Q.; Shi, D. Q. Efficient Synthesis and Evaluation of Antitumor Activities of Novel Functionalized 1, 8-naphthyridine Derivatives. ACS Comb. Sci. 2015, 17 (1), 24–31; https://doi.org/10.1021/co500120b.Suche in Google Scholar PubMed
39. Mukhopadhyay, S.; Gupta, R. K.; Biswas, A.; Kumar, A.; Dubey, M.; Hundal, M. S.; Pandey, D. S. A Dual-Responsive “Turn-On” Bifunctional Receptor: A Chemosensor for Fe 3+ and Chemodosimeter for Hg 2+. Dalton Trans. 2015, 44 (16), 7118–7122; https://doi.org/10.1039/c4dt03778b.Suche in Google Scholar PubMed
40. Maruthesh, H.; Katagi, M. S.; Samuel, J.; Aladakatti, R. H.; Nandeshwarappa, B. P. Synthesis and Characterization of Substituted 5-(2-Chloroquinolin-3-yl)-1, 3, 4-Oxadiazole-2-Amines: Computational, in Silico ADME, Molecular Docking, and Biological Activities. Russ. J. Bioorg. Chem. 2023, 49 (6), 1422–1437; https://doi.org/10.1134/s1068162023060225.Suche in Google Scholar
© 2025 IUPAC & De Gruyter