CA19-9 and CEA carbon nanotube-based biosensors: a key for gastrointestinal cancers diagnosis
-
Nooshin Goudarzi
, Kimia Taebi , Masood Alaei , Mahdiyar Abdollahi , Farshad Foroughi und Sanaz Keshavarz Shahbaz
Abstract
Colorectal and pancreatic cancers represent significant global health challenges, contributing to high morbidity and mortality rates, largely due to limitations in early-stage detection. While traditional diagnostic methods are often invasive and costly, biosensors utilizing carbon nanotubes (CNTs) offer a transformative approach for detecting key cancer biomarkers. This review discusses the potential of CNT-based biosensors for the detection of established cancer biomarkers, specifically carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), two critical biomarkers for gastrointestinal cancers. We analyze various sensor configurations, including electrochemical, optical, and piezoelectric platforms, which leverage the exceptional properties of CNTs – such as high surface area and electrical conductivity – to achieve superior analytical performance. Key findings from the reviewed literature demonstrate that these advanced biosensors can achieve ultra-low limits of detection, often in the picogram/mL (pg/mL) and even femtogram/mL (fg/mL) range, surpassing conventional immunoassays by orders of magnitude. Furthermore, the integration of CNTs with other nanomaterials such as gold nanoparticles and quantum dots, further enhances signal amplification and sensor sensitivity. Despite existing challenges in industrial-scale fabrication and clinical integration, CNT-based biosensors hold promise for developing non-invasive diagnostic tests that could significantly improve early detection and monitoring of gastrointestinal cancers, leading to better patient outcomes.
Acknowledgments
We would like to sincerely thank our colleagues, Aida Mokhlesi and Pourya Fatollahzade, for their feedback and support throughout the study process.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Sanaz Keshavarz Shahbaz contributed to conceptualization, methodology, and project administration, overseeing the writing and final revision of the manuscript. Nooshin Goudarzi, Mahdiyar Abdollahi, and Kimia Taebi collected data and drafted the manuscript. Masood Alaei illustrated the figures and checked the native writing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
List of abbreviations
- CEA
-
Carcinoembryonic Antigen
- CA19-9
-
Carbohydrate Antigen 19-9
- CNT
-
Carbon Nanotube
- EUS
-
Endoscopic Ultrasound
- MCD
-
Multi-Cancer Detection Tests
- CTCs
-
Circulating Tumor Cells
- ctDNA
-
Circulating Tumor DNA
- FIT
-
Fecal Immunochemical Tests
- PDAC
-
Pancreatic Ductal Adenocarcinoma
- GPI
-
Glycosyl Phosphatidyl Inositol
- RIA
-
Radioimmunoassay
- ELISA
-
Enzyme-Linked Immunosorbent Assay
- LOD
-
Limit of Detection
- QD
-
Quantum Dots
- PSA
-
Prostate-Specific Antigen
- SWCNTs
-
Single-Walled Carbon Nanotubes
- MWCNTs
-
Multi-Walled Carbon Nanotubes
- HER
-
Hydrogen Evolution Reaction
- OER
-
Oxygen Evolution Reaction
- AFP
-
Alpha-fetoprotein
- HRP
-
Horseradish Peroxidase
- Au NPs
-
Gold Nanoparticles
- Ab1
-
Primary Antibody
- PB
-
Prussian Blue
- MB
-
Methylene Blue
- ErGO-CNT
-
Electrochemically Reduced Graphene Oxides and Carbon Nanotubes
- ITO
-
Indium Tin Oxide
- PDA
-
Polydopamine
- GCE
-
glassy carbon electrode
- CS
-
chitosan
- BSA
-
bovine serum albumin
- PEI
-
polyethyleneimine
- SERS
-
surface-enhanced Raman scattering
- PEC
-
Photoelectrochemical
- POCT
-
point-of-care testing
- MNPs
-
metal nanoparticles
- ECL
-
Electrochemiluminescence
- SAHH
-
S-Adenosyl-l-Homocysteine Hydrolase
- QCM
-
Quartz Crystal Microbalance
- PLL/HA/CNT
-
Poly-l-Lysine/Hydroxylapatite/Carbon Nanotube
References
1. Zhang, J.; Yang, L.; Pei, J.; Tian, Y.; Liu, J. A Reagentless Electrochemical Immunosensor for Sensitive Detection of Carcinoembryonic Antigen Based on the Interface with Redox probe-modified Electron Transfer Wires and Effectively Immobilized Antibody. Front. Chem. 2022, 10, 939736; https://doi.org/10.3389/fchem.2022.939736.Suche in Google Scholar PubMed PubMed Central
2. Arnold, M.; Abnet, C. C.; Neale, R. E.; Vignat, J.; Giovannucci, E. L.; McGlynn, K. A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159 (1), 335–49. e15; https://doi.org/10.1053/j.gastro.2020.02.068.Suche in Google Scholar PubMed PubMed Central
3. Singh, A. Global Burden of Five Major Types of Gastrointestinal Cancer. Gastroenterol. Rev./Przegląd Gastroenterologiczny 2024, 19 (1); https://doi.org/10.5114/pg.2024.141834.Suche in Google Scholar PubMed PubMed Central
4. Ladabaum, U.; Dominitz, J. A.; Kahi, C.; Schoen, R. E. Strategies for Colorectal Cancer Screening. Gastroenterology 2020, 158 (2), 418–32; https://doi.org/10.1053/j.gastro.2019.06.043.Suche in Google Scholar PubMed
5. Jahn, B.; Sroczynski, G.; Bundo, M.; Mühlberger, N.; Puntscher, S.; Todorovic, J.; Rochau, U.; Oberaigner, W.; Koffijberg, H.; Fischer, T.; Schiller-Fruehwirth, I.; Öfner, D.; Renner, F.; Jonas, M.; Hackl, M.; Ferlitsch, M.; Siebert, U. Effectiveness, Benefit Harm and Cost Effectiveness of Colorectal Cancer Screening in Austria. BMC Gastroenterol. 2019, 19 (1), 209; https://doi.org/10.1186/s12876-019-1121-y.Suche in Google Scholar PubMed PubMed Central
6. Loomans-Kropp, H. A.; Umar, A.; Minasian, L. M.; Pinsky, P. F. Multi-Cancer Early Detection Tests: Current Progress and Future Perspectives. Cancer Epidemiol. Biomarkers Prev. 2022, 31 (3), 512–4; https://doi.org/10.1158/1055-9965.epi-21-1387.Suche in Google Scholar
7. Lee, T.; Teng, T. Z. J.; Shelat, V. G. Carbohydrate Antigen 19-9 – Tumor Marker: Past, Present, and Future. World J. Gastrointest. Surg. 2020, 12 (12), 468; https://doi.org/10.4240/wjgs.v12.i12.468.Suche in Google Scholar PubMed PubMed Central
8. Choi, Y.-E.; Kwak, J.-W.; Park, J. W. Nanotechnology for Early Cancer Detection. Sensors 2010, 10 (1), 428–55; https://doi.org/10.3390/s100100428.Suche in Google Scholar PubMed PubMed Central
9. Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of Nanotechnology in Cancer Diagnosis and therapy-a mini-review. Int. J. Med. Sci. 2020, 17 (18), 2964; https://doi.org/10.7150/ijms.49801.Suche in Google Scholar PubMed PubMed Central
10. Alfei, S.; Reggio, C.; Zuccari, G. From Early Diagnoses to New Treatments for Liver, Pancreatic, Gastric, and Colorectal Cancers Using Carbon Nanotubes: New Chances Still Underexplored. Int. J. Mol. Sci. 2025, 26 (18), 9201; https://doi.org/10.3390/ijms26189201.Suche in Google Scholar PubMed PubMed Central
11. Yücer, S.; Sarac, B.; Ciftci, F. Electrochemical Biosensors Based on Carbon Nanotubes (CNTs) Used to Diagnosis Pancreatic and Liver Cancer. Microchem. J. 2025, 114289; https://doi.org/10.1016/j.microc.2025.114289.Suche in Google Scholar
12. Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; Suo, C.; Li, X.; Cheng, L.; Zhang, Z.; Niu, H.; Li, Z.; Xie, Z.; Shi, H.; Zhang, X.; Fan, M.; Wang, X.; Yang, Y.; Dang, J.; McConnell, C.; Zhang, J.; Wang, J.; Yu, S.; Ye, W.; Gao, Y.; Zhang, K.; Liu, R.; Jin, L. Non-Invasive Early Detection of Cancer Four Years Before Conventional Diagnosis Using a Blood Test. Nat. Commun. 2020, 11 (1), 3475; https://doi.org/10.1038/s41467-020-17316-z.Suche in Google Scholar PubMed PubMed Central
13. Nadauld, L.; Goldman, D. P. Considerations in the Implementation of Multicancer Early Detection Tests. Future Oncol. 2022, 18 (28), 3119–24; https://doi.org/10.2217/fon-2022-0120.Suche in Google Scholar PubMed
14. Bettegowda, C.; Sausen, M.; Leary, R. J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B. R.; Wang, H.; Luber, B.; Alani, R. M.; Antonarakis, E. S.; Azad, N. S.; Bardelli, A.; Brem, H.; Cameron, J. L.; Lee, C. C.; Fecher, L. A.; Gallia, G. L.; Gibbs, P.; Le, D.; Giuntoli, R. L.; Goggins, M.; Hogarty, M. D.; Holdhoff, M.; Hong, S. M.; Jiao, Y.; Juhl, H. H.; Kim, J. J.; Siravegna, G.; Laheru, D. A.; Lauricella, C.; Lim, M.; Lipson, E. J.; Marie, S. K. N.; Netto, G. J.; Oliner, K. S.; Olivi, A.; Olsson, L.; Riggins, G. J.; Sartore-Bianchi, A.; Schmidt, K.; Shih, l. M.; Oba-Shinjo, S. M.; Siena, S.; Theodorescu, D.; Tie, J.; Harkins, T. T.; Veronese, S.; Wang, T. L.; Weingart, J. D.; Wolfgang, C. L.; Wood, L. D.; Xing, D.; Hruban, R. H.; Wu, J.; Allen, P. J.; Schmidt, C. M.; Choti, M. A.; Velculescu, V. E.; Kinzler, K. W.; Vogelstein, B.; Papadopoulos, N.; Diaz, L. A.Jr Detection of Circulating Tumor DNA in early-and late-stage Human Malignancies. Sci. Transl. Med. 2014, 6 (224), 224ra24–ra24; https://doi.org/10.1126/scitranslmed.3007094.Suche in Google Scholar PubMed PubMed Central
15. Doubeni, C. A.; Lau, Y. K.; Lin, J. S.; Pennello, G. A.; Carlson, R. W. Development and Evaluation of Safety and Effectiveness of Novel Cancer Screening Tests for Routine Clinical Use with Applications to Multicancer Detection Technologies. Cancer 2022, 128, 883–91; https://doi.org/10.1002/cncr.33954.Suche in Google Scholar PubMed PubMed Central
16. Li, J.; Guan, X.; Fan, Z.; Ching, L.-M.; Li, Y.; Wang, X.; Cao, W. M.; Liu, D. X. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers 2020, 12 (10), 2767; https://doi.org/10.3390/cancers12102767.Suche in Google Scholar PubMed PubMed Central
17. Ogunwobi, O. O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J. Mol. Sci. 2020, 21 (15), 5311; https://doi.org/10.3390/ijms21155311.Suche in Google Scholar PubMed PubMed Central
18. Ahmadipour, M.; Bhattacharya, A.; Sarafbidabad, M.; Syuhada Sazali, E.; Krishna Ghoshal, S.; Satgunam, M.; Singh, R.; Rezaei Ardani, M.; Missaoui, N.; Kahri, H.; Pal, U.; Ling Pang, A. CA19-9 and CEA Biosensors in Pancreatic Cancer. Clin. Chim. Acta 2024, 117788; https://doi.org/10.1016/j.cca.2024.117788.Suche in Google Scholar PubMed
19. Grunnet, M.; Sorensen, J. B. Carcinoembryonic Antigen (CEA) as Tumor Marker in Lung Cancer. Lung Cancer 2012, 76 (2), 138–43; https://doi.org/10.1016/j.lungcan.2011.11.012.Suche in Google Scholar PubMed
20. Passos, I.; Stefanidou, E.; Meditskou-Eythymiadou, S.; Mironidou-Tzouveleki, M.; Manaki, V.; Magra, V.; Laskou, S.; Mantalovas, S.; Pantea, S.; Kesisoglou, I.; Sapalidis, K. A Review of the Significance in Measuring Preoperative and Postoperative Carcinoembryonic Antigen (CEA) Values in Patients with Medullary Thyroid Carcinoma (MTC). Medicina (Kaunas) 2021, 57 (6); https://doi.org/10.3390/medicina57060609.Suche in Google Scholar PubMed PubMed Central
21. Xing, H.; Wang, J.; Wang, Y.; Tong, M.; Hu, H.; Huang, C.; Li, D. Diagnostic Value of CA 19‐9 and Carcinoembryonic Antigen for Pancreatic Cancer: A Meta‐Analysis. Gastroenterol. Res. Pract. 2018, 2018 (1), 8704751; https://doi.org/10.1155/2018/8704751.Suche in Google Scholar PubMed PubMed Central
22. Hammarström, S. The Carcinoembryonic Antigen (CEA) Family: Structures, Suggested Functions and Expression in Normal and Malignant Tissues. Semin. Cancer Biol. 1999, 9 (2), 67–81; https://doi.org/10.1006/scbi.1998.0119.Suche in Google Scholar PubMed
23. Kim, H.; Kang, K. N.; Shin, Y. S.; Byun, Y.; Han, Y.; Kwon, W.; Kim, C. W.; Jang, J. Y. Biomarker Panel for the Diagnosis of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020, 12 (6); https://doi.org/10.3390/cancers12061443.Suche in Google Scholar PubMed PubMed Central
24. Steele, N.; Haigh, R.; Knowles, G.; Mackean, M. Carcinoembryonic Antigen (CEA) Testing in Colorectal Cancer Follow Up: What Do Patients Think? Postgrad. Med. J. 2007, 83 (983), 612–4; https://doi.org/10.1136/pgmj.2007.059634.Suche in Google Scholar PubMed PubMed Central
25. Ballehaninna, U. K.; Chamberlain, R. S. The Clinical Utility of Serum CA 19-9 in the Diagnosis, Prognosis and Management of Pancreatic Adenocarcinoma: An Evidence Based Appraisal. J. Gastrointest. Oncol. 2012, 3 (2), 105; https://doi.org/10.3978/j.issn.2078-6891.2011.021.Suche in Google Scholar PubMed PubMed Central
26. Itzkowitz, S. H.; Yuan, M.; Fukushi, Y.; Lee, H.; Shi, Z. R.; Zurawski, V.Jr.; Hakomori, S.; Kim, Y. S. Immunohistochemical Comparison of Lea, Monosialosyl Lea (CA 19-9), and Disialosyl Lea Antigens in Human Colorectal and Pancreatic Tissues. Cancer Res. 1988, 48 (13), 3834–42.Suche in Google Scholar
27. Lakemeyer, L.; Sander, S.; Wittau, M.; Henne-Bruns, D.; Kornmann, M.; Lemke, J. Diagnostic and Prognostic Value of CEA and CA19-9 in Colorectal Cancer. Diseases 2021, 9 (1), 21; https://doi.org/10.3390/diseases9010021.Suche in Google Scholar PubMed PubMed Central
28. Jia, J.; Zhang, P.; Gou, M.; Yang, F.; Qian, N.; Dai, G. The Role of Serum CEA and CA19‐9 in Efficacy Evaluations and Progression‐Free Survival Predictions for Patients Treated with Cetuximab Combined with FOLFOX4 or FOLFIRI as a First‐Line Treatment for Advanced Colorectal Cancer. Dis. Markers 2019, 2019 (1), 6812045; https://doi.org/10.1155/2019/6812045.Suche in Google Scholar PubMed PubMed Central
29. Czakó, L.; Takács, T.; Babarczy, E.; Dux, L.; Lonovics, J. Comparative Study of the Role of CA 19-9, CA 72-4 and CEA Tumor Antigens in the Diagnosis of Pancreatic Cancer and Other Gastrointestinal Malignant Diseases. Orv. Hetil. 1997, 138 (47), 2981–5.Suche in Google Scholar
30. Lee, T.; Teng, T. Z. J.; Shelat, V. G. Carbohydrate Antigen 19-9 – Tumor Marker: Past, Present, and Future. World J. Gastrointest. Surg. 2020, 12 (12), 468–90; https://doi.org/10.4240/wjgs.v12.i12.468.Suche in Google Scholar PubMed PubMed Central
31. Mondal, J.; An, J. M.; Surwase, S. S.; Chakraborty, K.; Sutradhar, S. C.; Hwang, J.; Lee, J.; Lee, Y. K. Carbon Nanotube and its Derived Nanomaterials Based High Performance Biosensing Platform. Biosensors (Basel) 2022, 12 (9); https://doi.org/10.3390/bios12090731.Suche in Google Scholar PubMed PubMed Central
32. Suan Ng, S.; Ling Lee, H.; Bothi Raja, P.; Doong, R. A. Recent Advances in Nanomaterial-based Optical Biosensors as Potential Point-of-Care Testing (PoCT) Probes in Carcinoembryonic Antigen Detection. Chem. Asian J. 2022, 17 (14), e202200287; https://doi.org/10.1002/asia.202200287.Suche in Google Scholar PubMed
33. Chen, W.; Chi, M.; Wang, M.; Liu, Y.; Kong, S.; Du, L.; Wang, J.; Wu, C. Label-Free Detection of CA19-9 Using a BSA/Graphene-Based Antifouling Electrochemical Immunosensor. Sensors 2023, 23 (24), 9693; https://doi.org/10.3390/s23249693.Suche in Google Scholar PubMed PubMed Central
34. Gu, X.; Minko, T. Targeted Nanoparticle-based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers 2024, 16 (8), 1589; https://doi.org/10.3390/cancers16081589.Suche in Google Scholar PubMed PubMed Central
35. Setford, S. J.; Newman, J. D. Enzyme Biosensors. Microb. Enzym. Biotransform. 2005, 29–60; https://doi.org/10.1385/1-59259-846-3:029.10.1385/1-59259-846-3:029Suche in Google Scholar
36. Coulet, P. R. What Is a Biosensor? Biosensor Princ. Appl. 2019, 1–6; https://doi.org/10.1201/9780367810849-1.Suche in Google Scholar
37. Karunakaran, R.; Keskin, M. Biosensors: Components, Mechanisms, and Applications. In Analytical Techniques in Biosciences; Elsevier: Amsterdam, 2022; pp 179–90.10.1016/B978-0-12-822654-4.00011-7Suche in Google Scholar
38. Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60 (1), 1–8; https://doi.org/10.1042/ebc20150001.Suche in Google Scholar
39. Cristea, C.; Florea, A.; Tertiş, M.; Săndulescu, R. Immunosensors. Biosensors-micro and Nanoscale Applications; IntechOpen: London, UK, 2015.10.5772/60524Suche in Google Scholar
40. Aydin, M.; Aydin, E. B.; Sezgintürk, M. K. Advances in Immunosensor Technology. Adv. Clin. Chem. 2021, 102, 1–62; https://doi.org/10.1016/bs.acc.2020.08.001.Suche in Google Scholar PubMed
41. Manaf, B. A. A.; Hong, S. P.; Rizwan, M.; Arshad, F.; Gwenin, C.; Ahmed, M. U. Recent Advancement in Sensitive Detection of Carcinoembryonic Antigen Using Nanomaterials Based Immunosensors. Surf. Interfaces 2022, 102596; https://doi.org/10.1016/j.surfin.2022.102596.Suche in Google Scholar
42. Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S. A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 2019, 9 (3), 86; https://doi.org/10.3390/bios9030086.Suche in Google Scholar PubMed PubMed Central
43. Lee, S.; Lee, J.; Cao, Y.; An, C.; Kang, S. H. Nanomaterial-Based single-molecule Optical Immunosensors for Supersensitive Detection. Biosens. Bioelectron.: X 2022, 100191; https://doi.org/10.1016/j.biosx.2022.100191.Suche in Google Scholar
44. Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in Cancer Diagnosis: Progress, Challenges and Opportunities. J. Hematol. Oncol. 2019, 12 (1), 1–13; https://doi.org/10.1186/s13045-019-0833-3.Suche in Google Scholar PubMed PubMed Central
45. Dessale, M.; Mengistu, G.; Mengist, H. M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int. J. Nanomed. 2022, 3735–49; https://doi.org/10.2147/ijn.s378074.Suche in Google Scholar
46. Datta, D.; Das, K. P.; Deepak, K.; Das, B. Candidates of Functionalized Nanomaterial-based Membranes. In Membranes with functionalized nanomaterials; Elsevier: Amsterdam, 2022; pp 81–127.10.1016/B978-0-323-85946-2.00004-7Suche in Google Scholar
47. Sajid, M. I.; Jamshaid, U.; Jamshaid, T.; Zafar, N.; Fessi, H.; Elaissari, A. Carbon Nanotubes from Synthesis to in Vivo Biomedical Applications. Int. J. Pharm. 2016, 501 (1–2), 278–99; https://doi.org/10.1016/j.ijpharm.2016.01.064.Suche in Google Scholar PubMed
48. Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon Nanotubes and Its Applications: A Review. Asian J. Pharm. Clin. Res. 2009, 2 (4), 17–27.Suche in Google Scholar
49. Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular Chemistry on water-soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano 2007, 1 (1), 50–6; https://doi.org/10.1021/nn700040t.Suche in Google Scholar PubMed
50. He, H.; Pham-Huy, L. A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon Nanotubes: Applications in Pharmacy and Medicine. BioMed. Res. Int. 2013, 2013, 578290; https://doi.org/10.1155/2013/578290.Suche in Google Scholar PubMed PubMed Central
51. Gomez-Gualdrón, D. A.; Burgos, J. C.; Yu, J.; Balbuena, P. B. Carbon Nanotubes: Engineering Biomedical Applications. Prog. Mol. Biol. Transl. Sci. 2011, 104, 175–245.10.1016/B978-0-12-416020-0.00005-XSuche in Google Scholar PubMed
52. Tran, P. A.; Zhang, L.; Webster, T. J. Carbon Nanofibers and Carbon Nanotubes in Regenerative Medicine. Adv. Drug. Deliv. Rev. 2009, 61 (12), 1097–114; https://doi.org/10.1016/j.addr.2009.07.010.Suche in Google Scholar PubMed
53. Srinivasan, V.; Palanisamy, P. Carbon Nanotubes: An Optimistic Nanomaterial with Superfluity Characteristics in Drug Delivery for the Treatment of Arthritis. Indian J. Pharmaceut. Educ. Res. 2022, 56 (4), S627–S650; https://doi.org/10.5530/ijper.56.4s.210.Suche in Google Scholar
54. Hadidi, N.; Mohebbi, M. Anti-Infective and Toxicity Properties of Carbon Based Materials: Graphene and Functionalized Carbon Nanotubes. Microorganisms 2022, 10 (12), 2439; https://doi.org/10.3390/microorganisms10122439.Suche in Google Scholar PubMed PubMed Central
55. Menezes, B. R. C. D.; Rodrigues, K. F.; Fonseca, B. C. S.; Ribas, R. G.; Montanheiro, T. L. D. A.; Thim, G. P. Recent Advances in the Use of Carbon Nanotubes as Smart Biomaterials. J. Mater. Chem. B 2019, 7 (9), 1343–60; https://doi.org/10.1039/c8tb02419g.Suche in Google Scholar PubMed
56. Veetil, J. V.; Ye, K. Development of Immunosensors Using Carbon Nanotubes. Biotechnol. Prog. 2007, 23 (3), 517–31; https://doi.org/10.1021/bp0602395.Suche in Google Scholar PubMed
57. Münzer, A. M.; Michael, Z. P.; Star, A. Carbon Nanotubes for the Label-free Detection of Biomarkers. ACS Nano 2013, 7 (9), 7448–53; https://doi.org/10.1021/nn404544e.Suche in Google Scholar PubMed
58. Peng, Y.; Langermann, S.; Kothari, P.; Liu, L.; Zhao, W.; Hu, Y.; Chen, Z.; Moraes de Lima Perini, M.; Li, J.; Cao, J.; Guo, X. E.; Chen, L.; Bauman, W. A.; Qin, W. Anti‐Siglec‐15 Antibody Prevents Marked Bone Loss After Acute Spinal Cord Injury‐Induced Immobilization in Rats. J. Bone Miner. Res. Plus 2023, 7 (12), e10825; https://doi.org/10.1002/jbm4.10825.Suche in Google Scholar PubMed PubMed Central
59. Yang, J.; Hyeon, S.; Baek, J. Y.; Kang, M. S.; Lee, K. Y.; Lee, Y. H.; Huh, K.; Cho, S. Y.; Kang, C. I.; Chung, D. R.; Peck, K. R.; Won, G.; Lee, H. W.; Kim, K.; Hwang, I.; Lee, S. Y.; Kim, B. C.; Lee, Y. K.; Ko, J. H. Loss of Neutralizing Activity of Tixagevimab/Cilgavimab (Evusheld™) Against Omicron BN. 1, a Dominant Circulating Strain Following BA. 5 During the Seventh Domestic Outbreak in Korea in Early 2023. J. Kor. Med. Sci. 2023, 38 (27), e205; https://doi.org/10.3346/jkms.2023.38.e205.Suche in Google Scholar PubMed PubMed Central
60. Yager, E. J.; Kim, I.-J.; Burkum, C.; Rochford, R.; Blackman, M. A. Loss of Antibody Neutralization Activity in Mice During Persistent γ-herpesvirus Infection (45.16). J. Immunol. 2007, 178 (1_Supplement), S60–S; https://doi.org/10.4049/jimmunol.178.supp.45.16.Suche in Google Scholar
61. Ding, Y.; Cui, Y.; Yang, X.; Wang, X.; Tian, G.; Peng, J.; Wu, B.; Tang, L.; Cui, C. P.; Zhang, L. Anti-RANKL Monoclonal Antibody and Bortezomib Prevent Mechanical unloading-induced Bone Loss. J. Bone Miner. Metabol. 2021, 39 (6), 974–83; https://doi.org/10.1007/s00774-021-01246-x.Suche in Google Scholar PubMed
62. Yang, P.; Li, X.; Wang, L.; Wu, Q.; Chen, Z.; Lin, X. Sandwich-Type Amperometric Immunosensor for Cancer Biomarker Based on Signal Amplification Strategy of Multiple enzyme-linked Antibodies as Probes Modified with Carbon Nanotubes and Concanavalin A. J. Electroanal. Chem. 2014, 732, 38–45; https://doi.org/10.1016/j.jelechem.2014.08.030.Suche in Google Scholar
63. Wang, H.; Chai, Y.; Yuan, R.; Cao, Y.; Bai, L. Highly Enhanced Electrochemiluminescent Strategy for Tumor Biomarkers Detection with in Situ Generation of l-homocysteine for Signal Amplification. Anal. Chim. Acta 2014, 815, 16–21; https://doi.org/10.1016/j.aca.2014.01.040.Suche in Google Scholar PubMed
64. Feng, D.; Li, L.; Zhao, J.; Zhang, Y. Simultaneous Electrochemical Detection of Multiple Biomarkers Using Gold Nanoparticles Decorated Multiwall Carbon Nanotubes as Signal Enhancers. Anal. Biochem. 2015, 482, 48–54; https://doi.org/10.1016/j.ab.2015.04.018.Suche in Google Scholar PubMed
65. Han, J.; Jiang, L.; Li, F.; Wang, P.; Liu, Q.; Dong, Y.; Li, Y.; Wei, Q. Ultrasensitive Non-enzymatic Immunosensor for carcino-embryonic Antigen Based on Palladium Hybrid Vanadium pentoxide/multiwalled Carbon Nanotubes. Biosens. Bioelectron. 2016, 77, 1104–11; https://doi.org/10.1016/j.bios.2015.11.008.Suche in Google Scholar PubMed
66. Han, J.; Li, Y.; Feng, J.; Li, M.; Wang, P.; Chen, Z.; Dong, Y. A Novel Sandwich-type Immunosensor for Detection of carcino-embryonic Antigen Using Silver Hybrid Multiwalled Carbon nanotubes/manganese Dioxide. J. Electroanal. Chem. 2017, 786, 112–9; https://doi.org/10.1016/j.jelechem.2017.01.021.Suche in Google Scholar
67. Yu, Z.; Tang, Y.; Cai, G.; Ren, R.; Tang, D. Paper Electrode-based Flexible Pressure Sensor for point-of-care Immunoassay with Digital Multimeter. Anal. Chem. 2018, 91 (2), 1222–6; https://doi.org/10.1021/acs.analchem.8b04635.Suche in Google Scholar PubMed
68. Cao, L.; Tan, Y.; Deng, W.; Xie, Q. MWCNTs-CoP Hybrids for dual-signal Electrochemical Immunosensing of Carcinoembryonic Antigen Based on Overall Water Splitting. Talanta 2021, 233, 122521; https://doi.org/10.1016/j.talanta.2021.122521.Suche in Google Scholar PubMed
69. Jiang, L.; Chen, P.; Zha, L.; Liu, J.; Sun, D.; Dai, C.; Li, Y.; Miao, Y.; Ouyang, R. Enhanced Catalytic Amplification of Mesoporous bismuth-gold nano-electrocatalyst Triggering Efficient Capture of Tumor Marker. Colloids Surf. B: Biointerfaces 2022, 220, 112924; https://doi.org/10.1016/j.colsurfb.2022.112924.Suche in Google Scholar PubMed
70. Xu, H.; Wang, Y.; Wang, L.; Song, Y.; Luo, J.; Cai, X. A Label-free Microelectrode Array Based on One-step Synthesis of chitosan–multi-walled Carbon nanotube–thionine for Ultrasensitive Detection of Carcinoembryonic Antigen. Nanomaterials 2016, 6 (7), 132; https://doi.org/10.3390/nano6070132.Suche in Google Scholar PubMed PubMed Central
71. Yang, H.; Sun, G.; Zhang, L.; Zhang, Y.; Song, X.; Yu, J.; Ge, S. Ultrasensitive Photoelectrochemical Immunoassay Based on CdS@ Cu2O co-sensitized Porous ZnO Nanosheets and Promoted by Multiwalled Carbon Nanotubes. Sensor. Actuator. B: Chem. 2016, 234, 658–66; https://doi.org/10.1016/j.snb.2016.05.039.Suche in Google Scholar
72. Deng, W.; Shen, L.; Wang, X.; Yang, C.; Yu, J.; Yan, M.; Song, X. Using Carbon nanotubes-gold Nanocomposites to Quench Energy from Pinnate Titanium Dioxide Nanorods Array for signal-on Photoelectrochemical Aptasensing. Biosens. Bioelectron. 2016, 82, 132–9; https://doi.org/10.1016/j.bios.2016.04.007.Suche in Google Scholar PubMed
73. Li, N.; Wang, Y.; Cao, W.; Zhang, Y.; Yan, T.; Du, B.; Wei, Q. An Ultrasensitive Electrochemical Immunosensor for CEA Using MWCNT-NH2 Supported PdPt Nanocages as Labels for Signal Amplification. J. Mater. Chem. B 2015, 3 (9), 2006–11; https://doi.org/10.1039/c4tb01695e.Suche in Google Scholar PubMed
74. Deng, L.; Lai, G.; Fu, L.; Lin, C.-T.; Yu, A. Enzymatic Deposition of Gold Nanoparticles at Vertically Aligned Carbon Nanotubes for Electrochemical Stripping Analysis and Ultrasensitive Immunosensing of Carcinoembryonic Antigen. Analyst 2020, 145 (8), 3073–80; https://doi.org/10.1039/c9an02633a.Suche in Google Scholar PubMed
75. Feng, D.; Li, L.; Fang, X.; Han, X.; Zhang, Y. Dual Signal Amplification of Horseradish Peroxidase Functionalized Nanocomposite as Trace Label for the Electrochemical Detection of Carcinoembryonic Antigen. Electrochim. Acta 2014, 127, 334–41; https://doi.org/10.1016/j.electacta.2014.02.072.Suche in Google Scholar
76. Li, J.; Zhao, L.; Wang, W.; Liu, Y.; Yang, H.; Kong, J.; Si, F. Polymer-Functionalized Carbon Nanotubes Prepared via ring-opening Polymerization for Electrochemical Detection of Carcinoembryonic Antigen. Sensor. Actuator. B: Chem. 2021, 328, 129031; https://doi.org/10.1016/j.snb.2020.129031.Suche in Google Scholar
77. Li, W.-T.; Wang, Y.; Deng, F.-F.; Liu, L.-L.; Nan, H.-J.; Li, H. Electrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Mo–Mn3O4/MWCNTs/Chits Nanocomposite Modified ITO Electrode. Nano 2015, 10 (08), 1550111; https://doi.org/10.1142/s1793292015501118.Suche in Google Scholar
78. Lv, H.; Li, Y.; Zhang, X.; Gao, Z.; Feng, J.; Wang, P.; Dong, Y. The Label-free Immunosensor Based on Rhodium@ Palladium nanodendrites/sulfo Group Functionalized multi-walled Carbon Nanotubes for the Sensitive Analysis of Carcino Embryonic Antigen. Anal. Chim. Acta 2018, 1007, 61–70; https://doi.org/10.1016/j.aca.2017.12.030.Suche in Google Scholar PubMed
79. Feng, D.; Lu, X.; Dong, X.; Ling, Y.; Zhang, Y. Label-Free Electrochemical Immunosensor for the Carcinoembryonic Antigen Using a Glassy Carbon Electrode Modified with Electrodeposited Prussian Blue, a Graphene and Carbon Nanotube Assembly and an Antibody Immobilized on Gold Nanoparticles. Microchim. Acta 2013, 180, 767–74; https://doi.org/10.1007/s00604-013-0985-8.Suche in Google Scholar
80. Liu, W.; Yang, H.; Ding, Y.; Ge, S.; Yu, J.; Yan, M.; Song, X. Based Colorimetric Immunosensor for Visual Detection of Carcinoembryonic Antigen Based on the High Peroxidase-like Catalytic Performance of ZnFe2O4–multiwalled Carbon Nanotubes. Analyst 2014, 139 (1), 251–8; https://doi.org/10.1039/c3an01569f.Suche in Google Scholar PubMed
81. Yan, Z.; Xing, J.; He, R.; Guo, Q.; Li, J. Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9. Molecules 2022, 27 (20), 6778; https://doi.org/10.3390/molecules27206778.Suche in Google Scholar PubMed PubMed Central
82. Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Kumar Jana, S. Bio-Nanocomposite Based Highly Sensitive and Label-free Electrochemical Immunosensor for Endometriosis Diagnostics Application. Bioelectrochemistry 2021, 139, 107740; https://doi.org/10.1016/j.bioelechem.2021.107740.Suche in Google Scholar PubMed
83. Thapa, A.; Soares, A. C.; Soares, J. C.; Awan, I. T.; Volpati, D.; Melendez, M. E.; Fregnani, J. H. T. G.; Carvalho, A. L.; Oliveira, O. N.Jr. Carbon Nanotube Matrix for Highly Sensitive Biosensors to Detect Pancreatic Cancer Biomarker CA19-9. ACS Appl. Mater. Interfaces 2017, 9 (31), 25878–86; https://doi.org/10.1021/acsami.7b07384.Suche in Google Scholar PubMed
84. Soares, J. C.; Iwaki, L. E.; Soares, A. C.; Rodrigues, V. C.; Melendez, M. E.; Fregnani, J. H. T.; Reis, R. M.; Carvalho, A. L.; Corrêa, D. S.; Oliveira, O. N.Jr. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS Omega 2017, 2 (10), 6975–83; https://doi.org/10.1021/acsomega.7b01029.Suche in Google Scholar PubMed PubMed Central
85. Jin, W.; Zhang, R.; Dong, C.; Jiang, T.; Tian, Y.; Yang, Q.; Yi, W.; Hou, J. A Simple MWCNTs@ Paper Biosensor for CA19-9 Detection and its long-term Preservation by Vacuum Freeze Drying. Int. J. Biol. Macromol. 2020, 144, 995–1003; https://doi.org/10.1016/j.ijbiomac.2019.09.176.Suche in Google Scholar PubMed
86. Zhuo, Y.; Yuan, R.; Chai, Y.-Q.; Hong, C.-L. Functionalized SiO2 Labeled CA19-9 Antibodies: A New Strategy for Signal Amplification of antigen–antibody Sensing Processes. Analyst 2010, 135 (8), 2036–42; https://doi.org/10.1039/c0an00022a.Suche in Google Scholar PubMed
87. Ding, Y.; Liu, J.; Jin, X.; Lu, H.; Shen, G.; Yu, R. Poly-L-lysine/hydroxyapatite/carbon Nanotube Hybrid Nanocomposite Applied for Piezoelectric Immunoassay of Carbohydrate Antigen 19-9. Analyst 2008, 133 (2), 184–90; https://doi.org/10.1039/b713824e.Suche in Google Scholar PubMed
88. Liu, M.; Song, Y.; Liu, M.; Deng, D.; Zhang, W.; Wang, T.; Luo, L. The Application of Functional Nanomaterials-Based Electrochemical Biosensors in Detecting Cancer Biomarkers: A Review. Molecules 2025, 30 (13), 2708; https://doi.org/10.3390/molecules30132708.Suche in Google Scholar PubMed PubMed Central
89. Felix, F. S.; Angnes, L. Electrochemical Immunosensors – A Powerful Tool for Analytical Applications. Biosens. Bioelectron. 2018, 102, 470–8; https://doi.org/10.1016/j.bios.2017.11.029.Suche in Google Scholar PubMed
90. Lim, S. A.; Ahmed, M. U. Electrochemical Immunosensors and Their Recent Nanomaterial-based Signal Amplification Strategies: A Review. RSC Adv. 2016, 6 (30), 24995–5014; https://doi.org/10.1039/c6ra00333h.Suche in Google Scholar
91. Zhang, J.; Yang, L.; Pei, J.; Tian, Y.; Liu, J. A Reagentless Electrochemical Immunosensor for Sensitive Detection of Carcinoembryonic Antigen Based on the Interface with Redox probe-modified Electron Transfer Wires and Effectively Immobilized Antibody. Front. Chem. 2022, 10; https://doi.org/10.3389/fchem.2022.939736.Suche in Google Scholar PubMed PubMed Central
92. Jiang, L.; Chen, P.; Zha, L.; Liu, J.; Sun, D.; Dai, C.; Li, Y.; Miao, Y.; Ouyang, R. Enhanced Catalytic Amplification of Mesoporous bismuth-gold nano-electrocatalyst Triggering Efficient Capture of Tumor Marker. Colloids Surf. B Biointerfaces 2022, 220, 112924; https://doi.org/10.1016/j.colsurfb.2022.112924.Suche in Google Scholar PubMed
93. Han, J.; Jiang, L.; Li, F.; Wang, P.; Liu, Q.; Dong, Y.; Li, Y.; Wei, Q. Ultrasensitive Non-enzymatic Immunosensor for carcino-embryonic Antigen Based on Palladium Hybrid Vanadium pentoxide/multiwalled Carbon Nanotubes. Biosens. Bioelectron. 2016, 77, 1104–11; https://doi.org/10.1016/j.bios.2015.11.008.Suche in Google Scholar PubMed
94. Huang, Z.; Jiang, Z.; Zhao, C.; Han, W.; Lin, L.; Liu, A.; Weng, S.; Lin, X. Simple and Effective Label-free Electrochemical Immunoassay for Carbohydrate Antigen 19-9 Based on polythionine-Au Composites as Enhanced Sensing Signals for Detecting Different Clinical Samples. Int. J. Nanomed. 2017, 3049–58; https://doi.org/10.2147/ijn.s131805.Suche in Google Scholar
95. Jiang, J.; Xia, J.; Zang, Y.; Diao, G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. Sensors (Basel) 2021, 21 (22); https://doi.org/10.3390/s21227742.Suche in Google Scholar PubMed PubMed Central
96. Goble, J. A.; Rocafort, P. T. Point-Of-Care Testing: Future of Chronic Disease State Management? J. Pharm. Pract. 2015, 30 (2), 229–37; https://doi.org/10.1177/0897190015587696.Suche in Google Scholar PubMed
97. Hasanzadeh, M.; Shadjou, N. Electrochemical and Photoelectrochemical nano-immunesensing Using Origami Paper Based Method. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 979–1001; https://doi.org/10.1016/j.msec.2015.12.031.Suche in Google Scholar PubMed
98. Yang, H.; Sun, G.; Zhang, L.; Zhang, Y.; Song, X.; Yu, J.; Ge, S. Ultrasensitive Photoelectrochemical Immunoassay Based on CdS@Cu2O co-sensitized Porous ZnO Nanosheets and Promoted by Multiwalled Carbon Nanotubes. Sensor. Actuator. B: Chem. 2016, 234, 658–66; https://doi.org/10.1016/j.snb.2016.05.039.Suche in Google Scholar
99. Deng, W.; Shen, L.; Wang, X.; Yang, C.; Yu, J.; Yan, M.; Song, X. Using Carbon nanotubes-gold Nanocomposites to Quench Energy from Pinnate Titanium Dioxide Nanorods Array for signal-on Photoelectrochemical Aptasensing. Biosens. Bioelectron. 2016, 82, 132–9; https://doi.org/10.1016/j.bios.2016.04.007.Suche in Google Scholar PubMed
100. Li, M.; Jiang, F.; Xue, L.; Peng, C.; Shi, Z.; Zhang, Z.; Li, J.; Pan, Y.; Wang, X.; Feng, C.; Qiao, D.; Chen, Z.; Luo, Q.; Chen, X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022, 27 (21), 7327; https://doi.org/10.3390/molecules27217327.Suche in Google Scholar PubMed PubMed Central
101. Filik, H.; Avan, A. A.; Tokatlı, Z. F. A Review on Colorimetric Sensing of Tumor Markers Based on enzyme-mimicking Nanomaterials. Curr. Med. Chem. 2021, 28 (30), 6123–45; https://doi.org/10.2174/0929867328666210412122604.Suche in Google Scholar PubMed
102. Lin, S.; Zhong, J.; Chi, Y.; Chen, Y.; Khan, M. S.; Shen, J. Colorimetric Immunosensor Based on Glassy Carbon Microspheres Test Strips for the Detection of Prostate-specific Antigen. Microchim. Acta 2021, 188, 1–7; https://doi.org/10.1007/s00604-021-04907-w.Suche in Google Scholar PubMed
103. Bertoncello, P.; Forster, R. J. Nanostructured Materials for Electrochemiluminescence (ECL)-based Detection Methods: Recent Advances and Future Perspectives. Biosens. Bioelectron. 2009, 24 (11), 3191–200; https://doi.org/10.1016/j.bios.2009.02.013.Suche in Google Scholar PubMed
104. Yang, X.; Yuan, R.; Chai, Y.; Zhuo, Y.; Mao, L.; Liu, Z.; Su, H.; Yuan, S. Electrochemiluminescence Sensor Based on Multiwalled Carbon Nanotubes Doped Polyvinyl Butyral Film Containing Ru (Bpy) _3ˆ2+ as Chemiluminescence Reagent. Electroanal.: Int. J. Devoted Fund. Practical Aspect. Electroanal. 2009, 21 (14), 1636–40; https://doi.org/10.1002/elan.200904589.Suche in Google Scholar
105. Cai, F.; Zhu, Q.; Zhao, K.; Deng, A.; Li, J. Multiple Signal Amplified Electrochemiluminescent Immunoassay for Hg2+ Using graphene-coupled Quantum Dots and Gold nanoparticles-labeled Horseradish Peroxidase. Environ. Sci. Technol. 2015, 49 (8), 5013–20; https://doi.org/10.1021/acs.est.5b00690.Suche in Google Scholar PubMed
106. Wang, H.; Chai, Y.; Yuan, R.; Cao, Y.; Bai, L. Highly Enhanced Electrochemiluminescent Strategy for Tumor Biomarkers Detection with in Situ Generation of L-homocysteine for Signal Amplification. Anal. Chim. Acta 2014, 815, 16–21; https://doi.org/10.1016/j.aca.2014.01.040.Suche in Google Scholar PubMed
107. Pohanka, M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials 2018, 11 (3), 448; https://doi.org/10.3390/ma11030448.Suche in Google Scholar PubMed PubMed Central
108. Narita, F.; Wang, Z.; Kurita, H.; Li, Z.; Shi, Y.; Jia, Y.; Soutis, C. A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID‐19 and Other Viruses. Adv. Mater. 2021, 33 (1), 2005448; https://doi.org/10.1002/adma.202005448.Suche in Google Scholar PubMed PubMed Central
109. Tang, D.-Q.; Zhang, D.-J.; Tang, D.-Y.; Ai, H. Amplification of the antigen–antibody Interaction from Quartz Crystal Microbalance Immunosensors via back-filling Immobilization of Nanogold on Biorecognition Surface. J. Immunol. Methods 2006, 316 (1-2), 144–52; https://doi.org/10.1016/j.jim.2006.08.012.Suche in Google Scholar PubMed
110. Lakemeyer, L.; Sander, S.; Wittau, M.; Henne-Bruns, D.; Kornmann, M.; Lemke, J. Diagnostic and Prognostic Value of CEA and CA19-9 in Colorectal Cancer. Diseases 2021, 9 (1); https://doi.org/10.3390/diseases9010021.Suche in Google Scholar PubMed PubMed Central
111. Wu, L.; Huang, P.; Wang, F.; Li, D.; Xie, E.; Zhang, Y.; Pan, S. Relationship Between Serum CA19-9 and CEA Levels and Prognosis of Pancreatic Cancer. Ann. Transl. Med. 2015, 3 (21); https://doi.org/10.3978/j.issn.2305-5839.2015.11.17.Suche in Google Scholar PubMed PubMed Central
112. Kildusiene, I.; Dulskas, A.; Smailyte, G. Value of Combined Serum CEA, CA72-4, and CA19-9 Marker Detection in Diagnosis of Colorectal Cancer. Tech. Coloproctol. 2024, 28 (1), 33; https://doi.org/10.1007/s10151-023-02873-4.Suche in Google Scholar PubMed
113. Zhou, H.; Wang, X.; Yuan, B.; Lu, B. Clinical Value of Combining Serum Tumor Marker Detection with Fecal Occult Blood Testing in Diagnosing Colorectal Cancer. J. Physiol. Pharmacol. 2022, 10; https://doi.org/10.26402/jpp.2022.3.12.Suche in Google Scholar PubMed
114. Yan, Z.; Xing, J.; He, R.; Guo, Q.; Li, J. Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9. Molecules 2022, 27 (20); https://doi.org/10.3390/molecules27206778.Suche in Google Scholar PubMed PubMed Central
115. Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Kumar Jana, S. Bio-Nanocomposite Based Highly Sensitive and Label-free Electrochemical Immunosensor for Endometriosis Diagnostics Application. Bioelectrochemistry 2021, 139, 107740; https://doi.org/10.1016/j.bioelechem.2021.107740.Suche in Google Scholar PubMed
116. Thapa, A.; Soares, A. C.; Soares, J. C.; Awan, I. T.; Volpati, D.; Melendez, M. E.; Fregnani, J. H. T. G.; Carvalho, A. L.; Oliveira, O. N.Jr. Carbon Nanotube Matrix for Highly Sensitive Biosensors to Detect Pancreatic Cancer Biomarker CA19-9. ACS Appl. Mater. Interfaces 2017, 9 (31), 25878–86; https://doi.org/10.1021/acsami.7b07384.Suche in Google Scholar PubMed
117. Zhuo, Y.; Yuan, R.; Chai, Y. Q.; Hong, C. L. Functionalized SiO2 Labeled CA19-9 Antibodies: A New Strategy for Signal Amplification of antigen-antibody Sensing Processes. Analyst 2010, 135 (8), 2036–42; https://doi.org/10.1039/c0an00022a.Suche in Google Scholar PubMed
118. Yang, J.; Hyeon, S.; Baek, J. Y.; Kang, M. S.; Lee, K. Y.; Lee, Y. H.; Huh, K.; Cho, S. Y.; Kang, C. I.; Chung, D. R.; Peck, K. R.; Won, G.; Lee, H. W.; Kim, K.; Hwang, I.; Lee, S. Y.; Kim, B. C.; Lee, Y. K.; Ko, J. H. Loss of Neutralizing Activity of Tixagevimab/Cilgavimab (Evusheld™) Against Omicron BN. 1, a Dominant Circulating Strain Following BA. 5 During the Seventh Domestic Outbreak in Korea in Early 2023. J. Korean Med. Sci. 2023, 38 (27), e205; https://doi.org/10.3346/jkms.2023.38.e205.Suche in Google Scholar PubMed PubMed Central
119. Srinivasan, V.; Palanisamy, P. Carbon Nanotubes: An Optimistic Nanomaterial with Superfluity Characteristics in Drug Delivery for the Treatment of Arthritis. Indian J. Pharm. Educ. Res. 2022, 56, S627–50; https://doi.org/10.5530/ijper.56.4s.210.Suche in Google Scholar
120. Manaf, B. A. A.; Hong, S. P.; Rizwan, M.; Arshad, F.; Gwenin, C.; Ahmed, M. U. Recent Advancement in Sensitive Detection of Carcinoembryonic Antigen Using Nanomaterials Based Immunosensors. Surf. Interfaces 2023, 36, 102596; https://doi.org/10.1016/j.surfin.2022.102596.Suche in Google Scholar
© 2025 IUPAC & De Gruyter