Abstract
In this perspective article, we discuss the link between minimum energy paths and activation parameters for reactions on complex potential energy surfaces involving many possible local minima, as are typically found for enzyme-substrate complexes. Such systems are frequently tackled with hybrid QM/MM methods in order to characterize reactivity. The link between local energy barriers along a minimum energy path, the so-called exponential average of such local energy barriers, and multiconformational transition state theory is discussed. Also, it is shown that in case of positive skewness of the distribution of barrier heights across sets of minimum energy paths, exponential averaging converges relatively quickly with the number of paths used.
Funding source: KU Leuven
Award Identifier / Grant number: C14/22/087
Acknowledgments
The authors thank Profs. Julianna Olah and Ulf Ryde for helpful discussions. They also acknowledge funding from KU Leuven research through grant C14/22/087.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. The text was written by both authors. The Monte Carlo analysis was performed by N.M.
-
Use of Large Language Models, AI and Machine Learning Tools: Non declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Yes, from KULeuven research funding, grant ref. C14/22/087.
-
Data availability: Not applicable.
References
1. Mardirossian, N.; Head-Gordon, M. Mol. Phys. 2017, 115, 2315–2372. https://doi.org/10.1080/00268976.2017.1333644.Suche in Google Scholar
2. Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys. 2013, 139, 134101. https://doi.org/10.1063/1.4821834.Suche in Google Scholar PubMed
3. Pulay, P. Molec. Phys. 1969, 17, 197–204. https://doi.org/10.1080/00268976900100941.Suche in Google Scholar
4. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214–218. https://doi.org/10.1002/jcc.540030212.Suche in Google Scholar
5. Fukui, K. J. Phys. Chem. 1970, 74, 4161–4163. https://doi.org/10.1021/j100717a029.Suche in Google Scholar
6. Miller, W. H.; Handy, N. C.; Adams, J. E. J. Chem. Phys. 1980, 72, 99–112. https://doi.org/10.1063/1.438959.Suche in Google Scholar
7. Stillinger, F. H. Phys. Rev. E 1999, 59, 48–51. https://doi.org/10.1103/PhysRevE.59.48.Suche in Google Scholar
8. Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi‐Ölçüm, N.; Houk, K. N. Angew. Chem. Int. Ed. 2008, 47, 7592–7601. https://doi.org/10.1002/anie.200800918.Suche in Google Scholar PubMed PubMed Central
9. For some examples, see Vereecken, L.; Peeters, J. J. Chem. Phys. 2003, 119, 5159–5170. https://doi.org/10.1063/1.1597479, K. H. Møller, R. V. Otkjær, N. Hyttinen, T. Kurtén, H. G. Kjaergaard, J. Phys. Chem. A 120, 10072–10087 (2016), https://doi.org/10.1021/acs.jpca.6b09370.Suche in Google Scholar
10. A very similar formalism has also been introduced to account for the kinetics of enzyme-catalyzed reactions observed at the single-molecule level, see Kou, S. C.; Cherayil, B. J.; Min, W.; English, B. P.; Xie, X. S. J. Phys. Chem. B 2005, 109, 19068–19081. https://doi.org/10.1021/jp051490q.Suche in Google Scholar PubMed
11. Siegbahn, P. E. M.; Himo, F. WIREs Comp. Mol. Sci. 2011, 1, 323–336. https://doi.org/10.1002/wcms.13.Suche in Google Scholar
12. For some reviews, see Senn, H. M.; Thiel, W. Angew. Chem. Int. Ed. 2009, 48, 1198–1229. https://doi.org/10.1002/anie.200802019; L. W. Chung, W. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H.-B. Li, L. Ding, K. Morokuma, Chem. Rev. 115, 5678–5796 (2015), https://doi.org/10.1021/cr5004419.Suche in Google Scholar PubMed
13. Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227–249. https://doi.org/10.1016/0022-2836(76)90311-9.Suche in Google Scholar PubMed
14. Wlodawer, A.; Minor, W.; Dauter, Z.; Jaskolski, M. FEBS J. 2013, 280, 5705–5736. https://doi.org/10.1111/febs.12495.Suche in Google Scholar PubMed PubMed Central
15. Lonsdale, R.; Harvey, J. N.; Mulholland, A. J. Chem. Soc. Rev. 2012, 41, 3025–3038. https://doi.org/10.1039/c2cs15297e.Suche in Google Scholar PubMed PubMed Central
16. Klähn, M.; Braun-Sand, S.; Rosta, E.; Warshel, A. J. Phys. Chem. B 2005, 109, 15645–15650. https://doi.org/10.1021/jp0521757.Suche in Google Scholar PubMed PubMed Central
17. Siegbahn, P. E. M.; Borowski, T. Faraday Discuss. 2011, 148, 109–117. https://doi.org/10.1039/C004378H.Suche in Google Scholar
18. This is a very broad field of research, with too many methods and variants to cover in detail in this study. We cite here a few landmark methods: Bash, P. A.; Field, M. J.; Karplus, M. J. Am. Chem. Soc. 1987, 109, 8092–8094. https://doi.org/10.1021/ja00260a028.(b) Hu, H.; Lu, Z.; Yang, W. J. Chem. Theory Comput. 2007, 3, 390–406. https://doi.org/10.1021/ct600240y.Suche in Google Scholar
19. For a recent example from our group, see Čivić, J.; Tuñon, I.; Harvey, J. N. ACS Catal. 2025, 15, 1684–1692. https://doi.org/10.1021/acscatal.4c06972.Suche in Google Scholar
20. For an example showing how both types of method continue to be be developed, see Yagi, K.; Ito, S.; Sugita, Y. J. Phys. Chem. B 2021, 125, 4701–4713. https://doi.org/10.1021/acs.jpcb.1c01862.Suche in Google Scholar PubMed PubMed Central
21. Ranaghan, K. E.; Mulholland, A. J. Int. Rev. Phys. Chem. 2010, 29, 65–133. https://doi.org/10.1080/01442350903495417.Suche in Google Scholar
22. Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113, 9978–9985. https://doi.org/10.1063/1.1323224.Suche in Google Scholar
23. Zimmerman, P. M. J. Chem. Phys. 2013, 138, 184102. https://doi.org/10.1063/1.4804162.Suche in Google Scholar PubMed
24. Cooper, A. M.; Kästner, J. Chem. Phys. Chem. 2014, 15, 3264–3269. https://doi.org/10.1002/cphc.201402382.Suche in Google Scholar PubMed
25. Ryde, U. J. Chem. Theory Comput. 2017, 13, 5745–5752. https://doi.org/10.1021/acs.jctc.7b00826.Suche in Google Scholar PubMed
26. Kwak, S. G.; Kim, J. H. Korean J. Anesthesiol. 2017, 70, 144–156. https://doi.org/10.4097/kjae.2017.70.2.144.Suche in Google Scholar PubMed PubMed Central
27. McFarlane, N. R.; Harvey, J. N. Phys. Chem. Chem. Phys. 2024, 26, 5999–6007. https://doi.org/10.1039/d3cp05772k.Suche in Google Scholar PubMed
28. (a) Groeneveld, R. A.; Meeden, G. The Statistician 1984, 33, 391–399. https://doi.org/10.2307/2987742.(b) Joanes, D. N.; Gill, C. A. The Statistician 1998, 47, 183–189. https://doi.org/10.1111/1467-9884.00122.(c) Balanda, K. P.; MacGillivray, H. L. Am. Statistician 1988, 42, 111–119. https://doi.org/10.2307/2684482.Suche in Google Scholar
29. Chook, Y. M.; Gray, J. V.; Ke, H.; Lipscomb, W. N. J. Mol. Biol. 1994, 240, 476–500. https://doi.org/10.1006/jmbi.1994.1462.Suche in Google Scholar PubMed
30. Taskesen, E., 2020. distfit is a python library for probability density fitting. (version 1.4.0). https://erdogant.github.io/distfit.Suche in Google Scholar
© 2025 IUPAC & De Gruyter