Abstract
Molecular topology fundamentally influences self-assembly, molecular recognition, and dynamic behavior in chemical systems. Among topologically nontrivial architectures, Möbius molecules – defined by a non-orientable, fully conjugated cyclic backbone with an odd linking number (Lk) – represent a unique class of π-conjugated macrocycles distinct from geometrically twisted analogues. Their one-sided surface and topological singularity confer exceptional properties, including intrinsic chirality, delocalized electronic pathways, and unconventional charge transport characteristics, positioning them as promising platforms for applications in optoelectronics, chiral sensing, and molecular electronics. Despite significant synthetic challenges arising from ring strain and conformational instability, recent advances in dynamic covalent chemistry, metal-templated cyclization, and heteroatom incorporation have enabled the construction of stable Möbius nanobelts and heterocyclic macrocycles with tunable redox and photophysical properties. Beyond discrete molecules, Möbius topology has also been extended to supramolecular assemblies and interlocked systems, broadening the functional scope of these structures. This review surveys recent progress in the design, synthesis, and functional exploration of Möbius systems, highlighting the critical role of topology in shaping their structure–property relationships and their emerging impact on supramolecular chemistry and molecular materials science.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21971022
Award Identifier / Grant number: 92156009
Acknowledgments
H.-Y. G. is grateful to the National Natural Science Foundation of China (21971022 and 92156009), the Fundamental Research Funds for the Central Universities and Beijing Normal University for financial support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Bin Hu and Dan-Yang Wang contributed equally to this work.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The National Natural Science Foundation of China (21971022 and 92156009).
-
Data availability: Not applicable.
References
1. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810–6918; https://doi.org/10.1021/cr200077m.Suche in Google Scholar PubMed PubMed Central
2. Rappaport, S. M.; Rzepa, H. S. J. Am. Chem. Soc. 2010, 132, 4500; https://doi.org/10.1021/ja100035p.Suche in Google Scholar
3. Ghibaudi, E.; Cerruti, L.; Villani, G. Found. Chem. 2019, 22, 279–307; https://doi.org/10.1007/s10698-019-09333-8.Suche in Google Scholar
4. Schaller, G. R.; Herges, R. Chem. Commun. 2013, 49, 1254–1260; https://doi.org/10.1039/c2cc34763f.Suche in Google Scholar PubMed
5. Herges, R. Chem. Rev. 2006, 106, 4820–4842; https://doi.org/10.1021/cr0505425.Suche in Google Scholar PubMed
6. Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819–821; https://doi.org/10.1038/nature02224.Suche in Google Scholar PubMed
7. Schaller, G. R.; Topić, F.; Rissanen, K.; Okamoto, Y.; Shen, J.; Herges, R. Nat. Chem. 2014, 6, 608–613; https://doi.org/10.1038/nchem.1995.Suche in Google Scholar PubMed
8. Wang, E.; He, Z.; Zhao, E.; Meng, L.; Schütt, C.; Lam, J. W.; Sung, H. H.; Williams, I. D.; Huang, X.; Herges, R.; Tang, B. Z. Chem. Eur. J. 2015, 21, 11707–11711; https://doi.org/10.1002/chem.201502224.Suche in Google Scholar PubMed
9. Jiang, X.; Laffoon, J. D.; Chen, D.; Pérez-Estrada, S.; Danis, A. S.; Rodríguez-López, J.; Garcia-Garibay, M. A.; Zhu, J.; Moore, J. S. J. Am. Chem. Soc. 2020, 142, 6493–6498; https://doi.org/10.1021/jacs.0c01430.Suche in Google Scholar PubMed
10. Li, K.; Xu, Z.; Xu, J.; Weng, T.; Chen, X.; Sato, S.; Wu, J.; Sun, Z. J. Am. Chem. Soc. 2021, 143, 20419–20430; https://doi.org/10.1021/jacs.1c10170.Suche in Google Scholar PubMed
11. Malinčík, J.; Gaikwad, S.; Mora-Fuentes, J. P.; Boillat, M. A.; Prescimone, A.; Häussinger, D.; Campaña, A. G.; Šolomek, T. Angew. Chem. Int. Ed. 2022, 61, e202208591; https://doi.org/10.1002/anie.202208591.Suche in Google Scholar PubMed PubMed Central
12. Terabayashi, T.; Kayahara, E.; Zhang, Y.; Mizuhata, Y.; Tokitoh, N.; Nishinaga, T.; Kato, T.; Yamago, S. Angew. Chem. Int. Ed. 2023, 62, e202214960; https://doi.org/10.1002/anie.202214960.Suche in Google Scholar PubMed
13. Naulet, G.; Sturm, L.; Robert, A.; Dechambenoit, P.; Röhricht, F.; Herges, R.; Bock, H.; Durola, F. Chem. Sci. 2018, 9, 8930–8936; https://doi.org/10.1039/c8sc02877j.Suche in Google Scholar PubMed PubMed Central
14. Luo, Z.; Yang, X.; Cai, K.; Fu, X.; Zhang, D.; Ma, Y.; Zhao, D. Angew. Chem., Int. Ed. 2020, 59, 14854–14860; https://doi.org/10.1002/anie.202003538.Suche in Google Scholar PubMed
15. Segawa, Y.; Watanabe, T.; Yamanoue, K.; Kuwayama, M.; Watanabe, K.; Pirillo, J.; Hijikata, Y.; Itami, K. Nat. Synth. 2022, 1, 535–541; https://doi.org/10.1038/s44160-022-00075-8.Suche in Google Scholar
16. Hasegawa, M.; Hasegawa, C.; Nagaya, Y.; Tsubaki, K.; Mazaki, Y. Chem. Eur. J. 2022, 28, e202202218; https://doi.org/10.1002/chem.202202218.Suche in Google Scholar PubMed
17. Fan, W.; Fukunaga, T. M.; Wu, S.; Han, Y.; Zhou, Q.; Wang, J.; Li, Z.; Hou, X.; Wei, H.; Ni, Y.; Isobe, H.; Wu, J. Nat. Synth. 2023, 2, 880–887; https://doi.org/10.1038/s44160-023-00317-3.Suche in Google Scholar
18. Wu, S.; Han, Y.; Ni, Y.; Hou, X.; Wei, H.; Li, Z.; Wu, J. Angew. Chem. Int. Ed. 2024, 63, e202320144; https://doi.org/10.1002/anie.202320144.Suche in Google Scholar PubMed
19. Zhou, Q.; Yuan, W.; Li, Y.; Han, Y.; Bao, L.; Fan, W.; Jiao, L.; Zhao, Y.; Ni, Y.; Zou, Y.; Yang, H. B.; Wu, J. Angew. Chem., Int. Ed. 2025, 64, e202417749; https://doi.org/10.1002/anie.202417749.Suche in Google Scholar PubMed
20. Stȩpień, M.; Latos-Grażyński, L.; Sprutta, N.; Chwalisz, P.; Szterenberg, L. Angew. Chem., Int. Ed. 2007, 46, 7869–7873; https://doi.org/10.1002/anie.200700555.Suche in Google Scholar PubMed
21. Pacholska-Dudziak, E.; Skonieczny, J.; Pawlicki, M.; Szterenberg, L.; Ciunik, Z.; Latos-Grażyński, L. J. Am. Chem. Soc. 2008, 130, 6182–6195; https://doi.org/10.1021/ja711039c.Suche in Google Scholar PubMed
22. Stȩpień, M.; Szyszko, B.; Latos-Grażyński, L. J. Am. Chem. Soc. 2010, 132, 3140–3152; https://doi.org/10.1021/ja909913y.Suche in Google Scholar PubMed
23. Szyszko, B.; Sprutta, N.; Chwalisz, P.; Stȩpień, M.; Latos-Grażyński, L. Chem. Eur. J. 2014, 20, 1985–1997; https://doi.org/10.1002/chem.201303676.Suche in Google Scholar PubMed
24. Park, J. K.; Yoon, Z. S.; Yoon, M.-C.; Kim, K. S.; Mori, S.; Shin, J.-Y.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2008, 130, 1824–1825; https://doi.org/10.1021/ja7100483.Suche in Google Scholar PubMed
25. Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park, J. K.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2008, 47, 681–684; https://doi.org/10.1002/anie.200704407.Suche in Google Scholar PubMed
26. Rath, H.; Suzuki, M.; Inokuma, Y.; Shinokubo, H.; Kim, K. S.; Yoon, Z. S.; Shin, J.-Y.; Lim, J. M.; Matsuzaki, Y.; Matsushita, O.; Muranaka, A.; Kobayashi, N.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2008, 130, 13568–13579; https://doi.org/10.1021/ja801983d.Suche in Google Scholar PubMed
27. Tokuji, S.; Shin, J.-Y.; Kim, K. S.; Lim, J. M.; Youfu, K.; Saito, S.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2009, 131, 7240–7241; https://doi.org/10.1021/ja902836x.Suche in Google Scholar PubMed
28. Inoue, M.; Kim, K. S.; Suzuki, M.; Lim, J. M.; Shin, J. Y.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2009, 48, 6687–6690; https://doi.org/10.1002/anie.200902677.Suche in Google Scholar PubMed
29. Lim, J. M.; Shin, J.-Y.; Tanaka, Y.; Saito, S.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2010, 132, 3105–3114; https://doi.org/10.1021/ja909744z.Suche in Google Scholar PubMed
30. Tanaka, T.; Sugita, T.; Tokuji, S.; Saito, S.; Osuka, A. Angew. Chem. Int. Ed. 2010, 49, 6619–6621; https://doi.org/10.1002/anie.201002282.Suche in Google Scholar PubMed
31. Higashino, T.; Inoue, M.; Osuka, A. J. Org. Chem. 2010, 75, 7958–7961; https://doi.org/10.1021/jo1018156.Suche in Google Scholar PubMed
32. Inoue, M.; Osuka, A. Angew. Chem., Int. Ed. 2010, 49, 9488–9491; https://doi.org/10.1002/anie.201005334.Suche in Google Scholar PubMed
33. Inoue, M.; Yoneda, T.; Youfu, K.; Aratani, N.; Osuka, A. Chem. Eur. J. 2011, 17, 9028–9031; https://doi.org/10.1002/chem.201100757.Suche in Google Scholar PubMed
34. Tanaka, T.; Osuka, A. Chem. Eur. J. 2012, 18, 7036–7040; https://doi.org/10.1002/chem.201200762.Suche in Google Scholar PubMed
35. Higashino, T.; Lee, B. S.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2012, 51, 13105–13108; https://doi.org/10.1002/anie.201208147.Suche in Google Scholar PubMed
36. Yoneda, T.; Aratani, N.; Osuka, A. J. Porphyrins Phthalocyanines. 2013, 17, 665–672; https://doi.org/10.1142/S1088424612501428.Suche in Google Scholar
37. Yoneda, T.; Sung, Y. M.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 13169–13173; https://doi.org/10.1002/anie.201408506.Suche in Google Scholar PubMed
38. Ishida, S.; Tanaka, T.; Lim, J. M.; Kim, D.; Osuka, A. Chem. Eur. J. 2014, 20, 8274–8278; https://doi.org/10.1002/chem.201402929.Suche in Google Scholar PubMed
39. Higashino, T.; Soya, T.; Kim, W.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2015, 54, 5456–5459; https://doi.org/10.1002/anie.201500099.Suche in Google Scholar PubMed
40. Nakai, A.; Kim, J.; Tanaka, T.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2021, 60, 26540–26544; https://doi.org/10.1002/anie.202112023.Suche in Google Scholar PubMed
41. Mallick, A.; Rath, H. Chem. Asian. J. 2016, 11, 986–990; https://doi.org/10.1002/anie.20.Suche in Google Scholar
42. Mallick, A.; Oh, J.; Majewski, M. A.; Stȩpień, M.; Kim, D.; Rath, H. J. Org. Chem. 2016, 82, 556–566; https://doi.org/10.1021/acs.joc.6b02576.Suche in Google Scholar PubMed
43. Cha, W. Y.; Soya, T.; Tanaka, T.; Mori, H.; Hong, Y.; Lee, S.; Park, K. H.; Osuka, A.; Kim, D. Chem. Commun. 2016, 52, 6076–6078; https://doi.org/10.1039/C6CC02051H.Suche in Google Scholar
44. Anju, K. S.; Das, M.; Adinarayana, B.; Suresh, C. H.; Srinivasan, A. Angew. Chem. Int. Ed. 2017, 56, 15667–15671; https://doi.org/10.1002/anie.201709859.Suche in Google Scholar PubMed
45. Ghosh, A.; Dash, S.; Srinivasan, A.; Sahu, M. S. R.; Suresh, C. H.; Chandrashekar, T. K. Chem. Eur. J. 2018, 24, 17997–18002; https://doi.org/10.1002/chem.201803552.Suche in Google Scholar PubMed
46. Dash, S.; Ghosh, A.; Bandyopadhyay, S.; Kalita, P.; Vishwakarma, R.; Srinivasan, A.; Suresh, C. H.; Chandrashekar, T. K. Eur. J. Org. Chem. 2023, 26, e202300870; https://doi.org/10.1002/ejoc.202300870.Suche in Google Scholar
47. Fan, Y. Y.; Chen, D.; Huang, Z. A.; Zhu, J.; Tung, C. H.; Wu, L. Z.; Cong, H. Nat. Commun. 2018, 9, 3037; https://doi.org/10.1038/s41467-018-05498-6.Suche in Google Scholar PubMed PubMed Central
48. Nishigaki, S.; Shibata, Y.; Nakajima, A.; Okajima, H.; Masumoto, Y.; Osawa, T.; Muranaka, A.; Sugiyama, H.; Horikawa, A.; Uekusa, H.; Koshino, H.; Uchiyama, M.; Sakamoto, A.; Tanaka, K. J. Am. Chem. Soc. 2019, 141, 14955–14960; https://doi.org/10.1021/jacs.9b06197.Suche in Google Scholar PubMed
49. Panda, K. N.; Thorat, K. G.; Ravikanth, M. Inorg. Chem. 2020, 59, 3585–3595; https://doi.org/10.1021/acs.inorgchem.9b02905.Suche in Google Scholar PubMed
50. Varak, P.; Sinha, A.; Ravikanth, M. New J. Chem. 2023, 47, 4720–4729; https://doi.org/10.1039/d2nj05085d.Suche in Google Scholar
51. Zhou, W.; Hao, M.; Lu, T.; Duan, Z.; Sarma, T.; Sessler, J. L.; Lei, C. Chem. Eur. J. 2021, 27, 16173–16180; https://doi.org/10.1002/chem.202102939.Suche in Google Scholar PubMed
52. Ye, L.; Hu, C.; Yang, D.; Zhang, L.; Chen, X.; Qiao, L.; Huang, Z.; Yang, J.; Miao, Q. J. Am. Chem. Soc. 2025, 147, 17795–17803; https://doi.org/10.1021/jacs.5c01323.Suche in Google Scholar PubMed PubMed Central
53. Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. J. Am. Chem. Soc. 1982, 104, 3219–3221; https://doi.org/10.1021/ja00375a051.Suche in Google Scholar
54. Wang, S.; Yuan, J.; Xie, J.; Lu, Z.; Jiang, L.; Mu, Y.; Huo, Y.; Tsuchido, Y.; Zhu, K. Angew. Chem., Int. Ed. 2021, 60, 18443–18447; https://doi.org/10.1002/anie.202104054.Suche in Google Scholar PubMed
55. Yuan, J.; Song, Y.; Li, X.; Xie, J.; Dong, S.; Zhu, K. Org. Lett. 2021, 23, 9554–9558; https://doi.org/10.1021/acs.orglett.1c03781.Suche in Google Scholar PubMed
56. Lv, W.; Song, Y.; Lv, X.; Yuan, J.; Zhu, K. Chin. Chem. Lett. 2023, 34, 108179; https://doi.org/10.1016/j.cclet.2023.108179.Suche in Google Scholar
57. Ouyang, G.; Ji, L.; Jiang, Y.; Würthner, F.; Liu, M. Nat. Commun. 2020, 11, 5910; https://doi.org/10.1038/s41467-020-19683-z.Suche in Google Scholar PubMed PubMed Central
58. Chen, Y.; Jing, B.; Chang, Z.; Gong, J. JACS. Au. 2022, 2, 2686–2692; https://doi.org/10.1021/jacsau.2c00469.Suche in Google Scholar PubMed PubMed Central
© 2025 IUPAC & De Gruyter