Abstract
This study addresses the growing need to accurately identify trace elements in the environment, an important factor in effective pollution control and protection of public health. The goal was to evaluate and compare the sensitivity, selectivity, and specificity of Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) of different environmental matrices such as air, water, soil, and wastewater. Controlled laboratory experiments were carried out to assess the effectiveness of both techniques for the detection of polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), chemicals, and pesticides. Results revealed that GC-MS achieved high sensitivity for VOCs in air, with detection limits reaching of 0.1 pg/mL, and for PAHs in water and soil, with detection limits down to 2 pg/g. However, GC-MS performance was reduced in complex matrices like soil due to matrix effects. Conversely, LC-MS excelled in detecting polar and non-volatile compounds, such as pharmaceuticals in wastewater, reaching detection limits down to 0.5 pg/mL, and pesticides in soil, with detection limits down to 2 pg/g, even while contending with challenges like ion suppression. The findings emphasise the need to select an analytical method based on analyte type and matrix complexity to ensure precise detection and reliable results in complex environmental samples.
Graphical Abstract

-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: B.R.A.: Conceptualization, Methodology, Investigation, Resources, Data Curation, Writing – Original Draft, Writing – Review & Editing.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: Not applicable.
-
Research funding: Not applicable.
-
Data availability: Not applicable.
References
1. Adekenov, S. M.; Gafurov, N. M.; Turmukhambetov, A. Z. Chemical modification of estafiatin. Chem. Natur. Comp. 1991, 27 (5), 571–575. https://doi.org/10.1007/BF00630357.Suche in Google Scholar
2. Struminska, O.; Kurta, S.; Shevchuk, L.; Ivanyshyn, S. Biopolymers for seed presowing treatment. Chem. Natur. Comp. 2014, 8 (1), 81–88. https://doi.org/10.23939/chcht08.01.081.Suche in Google Scholar
3. Harigaya, K.; Yamada, H.; Yaku, K.; Nishi, H.; Haginaka, J. Development and Validation of a Sensitive GC-MS Method for the Determination of Alkylating Agent, 4-Chloro-1-Butanol, in Active Pharmaceutical Ingredients. Chem. Pharm. Bul. 2014, 62 (4), 395–398. https://doi.org/10.1248/cpb.c13-00916.Suche in Google Scholar PubMed
4. Van Gansbeke, W.; Polet, M.; Hooghe, F.; Devos, C.; Van Eenoo, P. Improved Sensitivity by Use of Gas Chromatography-Positive Chemical Ionisation Triple Quadrupole Mass Spectrometry for the Analysis of Drug Related Substances. J. Chrom. B 2015, 1001, 221–240. https://doi.org/10.1016/j.jchromb.2015.07.052.Suche in Google Scholar PubMed
5. Neu, H. J. Gas Chromatography in Environmental Analysis – Aims and Challenges. Fres. J. Anal. Chem. 1990, 337, 583–588. https://doi.org/10.1007/BF00323092.Suche in Google Scholar
6. Santos, F.; Galceran, M. T. The Application of Gas Chromatography to Environmental Analysis. TrAC Trends Analyt. Chem. 2002, 21, 672–685. https://doi.org/10.1016/S0165-9936(02)00813-0.Suche in Google Scholar
7. Sadkowska, J.; Caban, M.; Chmielewski, M.; Stepnowski, P.; Kumirska, J. Environmental aspects of Using Gas Chromatography for Determination of Pharmaceutical Residues in Samples Characterized by Different Composition of the Matrix. Arch. Envir. Prot. 2017, 43 (3), 3–9. https://doi.org/10.1515/aep-2017-0028.Suche in Google Scholar
8. Reemtsma, T. Liquid Chromatography-Mass Spectrometry and Strategies for Trace-Level Analysis of Polar Organic Pollutants. J. Chrom. A 2003, 1000 (1–2), 477–501. https://doi.org/10.1016/s0021-9673(03)00507-7.Suche in Google Scholar PubMed
9. Shukurlu, Y. H. The effect of selenium on the supramolecular structure and thermal characteristics of fibroin bombyx mori l. Period. Tche Quim. 2020, 17 (34), 591–598. https://doi.org/10.52571/PTQ.v17.n34.2020.615_P34_pgs_591_598.pdf.Suche in Google Scholar
10. Kurta, S.; Zakrzhevsky, A.; Kurta, M. Utilization of chloroorganic waste by their catalytic copolymerization. Pol. Pol. 2007, 52 (1), 51–55. https://doi.org/10.14314/polimery.2007.051.Suche in Google Scholar
11. Peris-Vicente, J.; Peris-García, E.; Albiol-Chiva, J.; Durgbanshi, A.; Ochoa-Aranda, E.; Carda-Broch, S.; Bose, D.; Esteve-Romero, J. Liquid Chromatography, a Valuable Tool in the Determination of Antibiotics in Biological, Food and Environmental Samples. Microc. J. 2022, 177, 107309. https://doi.org/10.1016/j.microc.2022.107309.Suche in Google Scholar
12. Ramírez-Morales, D.; Masís-Mora, M.; Montiel-Mora, J. R.; Cambronero-Heinrichs, J. C.; Pérez-Rojas, G.; Tormo-Budowski, R.; Méndez-Rivera, M.; Briceño-Guevara, S.; Gutiérrez-Quirós, J. A.; Arias-Mora, V.; Brenes-Alfaro, L.; Beita-Sandí, W.; Rodríguez-Rodríguez, C. E. Multi-Residue Analysis of Pharmaceuticals in Water Samples by Liquid Chromatography-Mass Spectrometry: Quality Assessment and Application to the Risk Assessment of Urban-Influenced Surface Waters in a Metropolitan Area of Central America. Proc. Saf. Envir. Prot. 2021, 153, 289–300. https://doi.org/10.1016/j.psep.2021.07.025.Suche in Google Scholar
13. Kadadou, D.; Tizani, L.; Alsafar, H.; Hasan, S. W. Analytical Methods for Determining Environmental Contaminants of Concern in Water and Wastewater. MethodsX 2024, 12, 102582. https://doi.org/10.1016/j.mex.2024.102582.Suche in Google Scholar PubMed PubMed Central
14. He, P.; Aga, D. Comparison of GC-MS/MS and LC-MS/MS for the Analysis of Hormones and Pesticides in Surface Waters: Advantages and Pitfalls. Analyt. Meth. 2019, 11, 1436–1448. https://doi.org/10.1039/C8AY02774A.Suche in Google Scholar
15. Lyubchik, S.; Lygina, E.; Lyubchyk, A.; Lyubchik, S.; Loureiro, J. M.; Fonseca, I. M.; Ribeiro, A. B.; Pinto, M. M.; Figueiredo, A. M. S. The kinetic parameters evaluation for the adsorption processes at “liquid-solid” interface. Electrokinet. Acr. Discip. Cont. New Strateg. Sust. Develop. 2015, 81–109. https://doi.org/10.1007/978-3-319-20179-5_5.Suche in Google Scholar
16. Lyubchik, S. B.; Galushko, L. Ya.; Rego, A. M.; Tamarkina, Yu. V.; Galushko, O. L.; Fonseca, I. M. Intercalation as an approach to the activated carbon preparation from Ukrainian anthracites. J. Phys. Chem. Sol. 2004, 65 (2–3), 127–132. https://doi.org/10.1016/j.jpcs.2003.10.006.Suche in Google Scholar
17. Asgerov, E. B.; Beskrovnyy, A. I.; Doroshkevich, N. V.; Mita, C.; Mardare, D. M.; Chicea, D.; Lazar, M. D.; Tatarinova, A. A.; Lyubchyk, S. I.; Lyubchyk, S. B.; Lyubchyk, A. I.; Doroshkevich, A. S. Reversible Martensitic Phase Transition in Yttrium-Stabilized ZrO2 Nanopowders by Adsorption of Water. Nanomater 2022, 12 (3), 435; https://doi.org/10.3390/nano12030435.Suche in Google Scholar PubMed PubMed Central
18. Subhoni, M.; Kholmurodov, K.; Doroshkevich, A.; Asgerov, E.; Yamamoto, T.; Lyubchyk, A.; Almasan, V.; Madadzada, A. Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped. J. Phys. Conf. Ser. 2018, 994 (1), 012013. https://doi.org/10.1088/1742-6596/994/1/012013.Suche in Google Scholar
19. Kunakh, O. M.; Yorkina, N. V.; Zhukov, O. V.; Turovtseva, N. M.; Bredikhina, Y. L.; Logvina-Byk, T. A. Recreation and terrain effect on the spatial variation of the apparent soil electrical conductivity in an urban park. Biosyst. Diver. 2020, 28 (1), 3–8. https://doi.org/10.15421/012001.Suche in Google Scholar
20. Kunakh, O. M.; Yorkina, N. V.; Turovtseva, N. M.; Bredikhina, J. L.; Balyuk, J. O.; Golovnya, A. V. Effect of Urban Park Reconstruction on Physical Soil Properties. Eco. Balk 2021, 13 (2), 57–73.Suche in Google Scholar
21. Lyubchyk, S.; Shapovalova, O.; Lygina, O.; Oliveira, M. C.; Appazov, N.; Lyubchyk, A.; Charmier, A. J.; Lyubchik, S.; Pombeiro, A. J. L. Integrated Green Chemical Approach to the Medicinal Plant Carpobrotus edulis Processing. Sci. Rep. 2019, 9 (1), 18171. https://doi.org/10.1038/s41598-019-53817-8.Suche in Google Scholar PubMed PubMed Central
22. Chen, Y. P.; Belwal, T.; Xu, Y. Q.; Ma, Q.; Li, D.; Li, L.; Xiao, H.; Luo, Z. S. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Critic. Rev. Food Sci. Nutr. 2023, 63 (27), 8639–8671. https://doi.org/10.1080/10408398.2022.2063250.Suche in Google Scholar PubMed
23. Chen, Y. P.; Xu, Y. Q.; Han, X. Y.; Ma, Q.; Zhou, W.; Guo, H. Y.; Li, D.; Luo, Z. S. Azacytidine shows potential in controlling the chilling injury of banana peel during cold storage. Food Cont. 2024, 159, 110283. https://doi.org/10.1016/j.foodcont.2023.110283.Suche in Google Scholar
24. Adekenov, S. M.; Gafurov, N. M.; Turdybekov, K. M.; Lindeman, S. V.; Struchkov, Yu. T. Chemical modification of the trans,trans-germacranolide stizolicin synthesis, molecular, and crystal structure of 6α-acetoxy-13-methoxy-1,10; 4,5-diepoxy-1,5,7α(H),8,11β(H)-E,E-germacr-8,12-olide. Chem. Natur. Comp. 1991, 27 (6), 690–696. https://doi.org/10.1007/BF00629927.Suche in Google Scholar
25. Shevko, V.; Aitkulov, D.; Badikova, A. Comprehensive Processing of Vanadium-Containing Black Shale Tailings. Period. Polytech. Chem. Eng. 2022, 66 (4), 617–628. https://doi.org/10.3311/PPch.20050.Suche in Google Scholar
26. Latorre, A.; Rigol, A.; Lacorte, S.; Barceló, D. Comparison of Gas Chromatography-Mass Spectrometry and Liquid Chromatography-Mass Spectrometry for the Determination of Fatty and Resin Acids in Paper Mill Process Waters. J. Chrom. A 2003, 991 (2), 205–215. https://doi.org/10.1016/S0021-9673(03)00217-6.Suche in Google Scholar PubMed
27. Sun, Q.; Dong, Y.; Wen, X.; Zhang, X.; Hou, S.; Zhao, W.; Yin, D. A Review on Recent Advances in Mass Spectrometry Analysis of Harmful Contaminants in Food. Front. Nutr. 2023, 10, 1244459. https://doi.org/10.3389/fnut.2023.1244459.Suche in Google Scholar PubMed PubMed Central
28. Goeury, K.; Vo Duy, S.; Munoz, G.; Prévost, M.; Sauvé, S. Assessment of Automated Off-Line Solid-Phase Extraction LC-MS/MS to Monitor EPA Priority Endocrine Disruptors in Tap Water, Surface Water, and Wastewater. Talanta 2022, 241, 123216. https://doi.org/10.1016/j.talanta.2022.123216.Suche in Google Scholar PubMed
29. Grobin, A.; Roškar, R.; Trontelj, J. A Robust Multi-Residue Method for the Monitoring of 25 Endocrine Disruptors at Ultra-Trace Levels in Surface Waters by SPE-LC-MS/MS. Analyt. Method. 2023, 15 (21), 2606–2621. https://doi.org/10.1039/D3AY00602F.Suche in Google Scholar PubMed
30. Galmiche, M.; Delhomme, O.; Francois, Y.-N.; Millet, M. Environmental Analysis of Polar and Non-Polar Polycyclic Aromatic Compounds in Airborne Particulate Matter, Settled Dust and Soot: Part II: Instrumental Analysis and Occurrence. TrAC Trends Analyt. Chem. 2020, 134, 116146. https://doi.org/10.1016/j.trac.2020.116146.Suche in Google Scholar
31. Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Three Approaches to Minimize Matrix Effects in Residue Analysis of Multiclass Pesticides in Dried Complex Matrices Using Gas Chromatography Tandem Mass Spectrometry. Food Chem. 2019, 279, 20–29. https://doi.org/10.1016/j.foodchem.2018.11.130.Suche in Google Scholar PubMed
32. Nasiri, A.; Jahani, R.; Mokhtari, S.; Yazdanpanah, H.; Daraei, B.; Faizi, M.; Kobarfard, F. Overview, Consequences, and Strategies for Overcoming Matrix Effects in LC-MS Analysis: A Critical Review. The Analyst 2021, 146, 6049–6063. https://doi.org/10.1039/D1AN01047F.Suche in Google Scholar PubMed
33. Kumar, D.; Gautam, N.; Alnouti, Y. Analyte Recovery in LC-MS/MS Bioanalysis: An Old Issue Revisited. Analyt. Chim. Acta 2022, 1198, 339512. https://doi.org/10.1016/j.aca.2022.339512.Suche in Google Scholar PubMed PubMed Central
34. Raina, R.; Hall, P. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionisation and Negative-Ion Chemical Ionisation for Analyses of Pesticides at Trace Levels in Atmospheric Samples. Analyt. Chem. Insig. 2008, 3, 111–125. https://doi.org/10.4137/aci.s1005.Suche in Google Scholar PubMed PubMed Central
35. Steiner, D.; Krska, R.; Malachová, A.; Taschl, I.; Sulyok, M. Evaluation of Matrix Effects and Extraction Efficiencies of LC-MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68 (12), 3868–3880. https://doi.org/10.1021/acs.jafc.9b07706.Suche in Google Scholar PubMed PubMed Central
36. Brinco, J.; Guedes, P.; Silva, M.; Mateus, E.; Ribeiro, A. Analysis of Pesticide Residues in Soil: A Review and Comparison of Methodologies. Microch. J. 2023, 195, 109465. https://doi.org/10.1016/j.microc.2023.109465.Suche in Google Scholar
37. Xu, M.-L.; Yu, G.; Xiao, W.; Xiao, X. H.; Bing, Z. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021, 10 (10), 2473. https://doi.org/10.3390/foods10102473.Suche in Google Scholar PubMed PubMed Central
38. Snow, N. Flying High with Sensitivity and Selectivity: GC-MS to GC-MS/MS. LCGC North Amer. 2021, 39 (2), 61–67. https://doi.org/10.56530/lcgc.na.yn3065q6.Suche in Google Scholar
39. Bowman, B. A.; Ejzak, E. A.; Reese, C. M.; Blount, B. C.; Bhandari, D. Mitigating Matrix Effects in LC-ESI-MS-MS Analysis of a Urinary Biomarker of Xylenes Exposure. J. Analyt. Toxic. 2023, 47 (2), 129–135. https://doi.org/10.1093/jat/bkac046.Suche in Google Scholar PubMed PubMed Central
40. Omotola, E. O.; Olatunji, O. S. Quantification of Selected Pharmaceutical Compounds in Water Using Liquid Chromatography-Electrospray Ionisation Mass Spectrometry (LC-ESI-MS). Heliyon 2020, 6 (12), e05787. https://doi.org/10.1016/j.heliyon.2020.e05787.Suche in Google Scholar PubMed PubMed Central
41. Camaj Isa, A.; Haziri, A.; Nuro, A.; Camaj Ibrahimi, A. An Overview on Persistent Organic Pollutants Levels in the White Drin River, Kosovo. Scien. Horiz. 2024, 25 (6), 73–85. https://doi.org/10.48077/scihor6.2024.73.Suche in Google Scholar
© 2025 IUPAC & De Gruyter