Abstract
Increased use of pesticides has proven to be a serious threat despite their benefits, due to their prolonged persistence in the environment that poses serious toxic effects on non-target species as well as disrupts the ecosystems by contaminating soil and water. Current review covers the role of different metal oxide, chalcogenide, nitride and other novel nanomaterials in the degradation of pesticides. Contribution of nanotechnology has been emphasized by including several degradation mechanisms such as charge transfer, adsorption and role of surface defects or states. Recent advancement in the field has been focused by incorporating the examples of novel and 0D, 1D and 2D functional nanomaterials such as graphene, carbon nanotubes, carbon quantum dots, MoS2 and their composites. Nanotechnology driven enhancement of selectivity and reactivity for pesticide breakdown, by surface modification and bandgap engineering has been included. As, in the current era the detection of trace pesticide residues becomes crucial, this review further covers the progress of nanotechnology-based sensors’ implementations in pesticide residue detection and environmental monitoring. Environmental impact and safety of nanotechnology in pesticides degradation has been highlighted by covering the aspects like potential risks and toxicity of nanomaterials. The article concludes with the important points like regulatory consideration and safety guidelines of using nanomaterials for environmental applications such as pesticide degradation.
Acknowledgments
We would like to thank Multidisciplinary Research & Innovation Center, NFSU Goa.
-
Informed consent: Not applicable.
-
Research ethics: This study does not involve any human participants, animals, or biological samples requiring ethical approval.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Research funding: None declared.
-
Conflict of interest: The authors declare that there is no conflict of interest regarding the publication of this article.
-
Data availability: All data supporting the findings of this study are available within the article.
-
Compliance with Legal and Ethical Standards: The authors affirm that the manuscript complies with all ethical and legal standards of the journal. Proper attribution and citation have been provided for all referenced work.
References
1. Harafan, A.; Gangwar, R. K.; Maliyekkal, S. M. Abatement of Pesticides in Drinking Water by Nanoscale Carbon Materials. Sep. Sci. Technol. 2022, 15, 139–161; https://doi.org/10.1016/B978-0-323-90763-7.00001-9.Search in Google Scholar
2. Marican, A.; Durán-Lara, E. F. A Review on Pesticide Removal through Different Processes. Environ. Sci. Pollut. Res. 2018, 25 (3), 2051–2064; https://doi.org/10.1007/s11356-017-0796-2.Search in Google Scholar PubMed
3. Mahmood, I.; Imadi, S. R.; Shazadi, K.; Gul, A.; Hakeem, K. R. Effects of Pesticides on Environment. In Plant, Soil and Microbes; Hakeem, K. R, Akhtar, M. S, Abdullah, S. N. A, Eds.; Springer International Publishing: Cham, 2016; pp 253–269.10.1007/978-3-319-27455-3_13Search in Google Scholar
4. Vaya, D.; Surolia, P. K. Semiconductor Based Photocatalytic Degradation of Pesticides: An Overview. Environ. Technol. Innov. 2020, 20, 101128; https://doi.org/10.1016/j.eti.2020.101128.Search in Google Scholar
5. Gilden, R. C.; Huffling, K.; Sattler, B. Pesticides and Health Risks. J. Obstet. Gynecol. Neonatal. Nurs. 2010, 39 (1), 103–110; https://doi.org/10.1111/j.1552-6909.2009.01092.x.Search in Google Scholar PubMed
6. Shefali; Rahul, K.; Mahipal, S. S.; Rajeev, K.; Swaroop, S. S. Impact of Pesticide Toxicity in Aquatic Environment. Biointerface Res. Appl. Chem. 2020, 11 (3), 10131–10140; https://doi.org/10.33263/BRIAC113.1013110140.Search in Google Scholar
7. Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D., Chu, C.; Phung, D. T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18 (3), 1112; https://doi.org/10.3390/ijerph18031112.Search in Google Scholar PubMed PubMed Central
8. Singh, N. S.; Sharma, R.; Parween, T.; Patanjali, P. K. Pesticide Contamination and Human Health Risk Factor. In Modern Age Environmental Problems and Their Remediation; Oves, M., Zain Khan, M., Ismail, I. M. I, Eds.; Springer International Publishing: Cham, 2018; pp 49–68.10.1007/978-3-319-64501-8_3Search in Google Scholar
9. Singh, B. K.; Walker, A. Microbial Degradation of Organophosphorus Compounds. FEMS Microbiol. Rev. 2006, 30 (3), 428–471; https://doi.org/10.1111/j.1574-6976.2006.00018.x.Search in Google Scholar PubMed
10. Chormare, R.; Kumar, M. A. Environmental Health and Risk Assessment Metrics with Special Mention to Biotransfer, Bioaccumulation and Biomagnification of Environmental Pollutants. Chemosphere 2022, 302, 134836; https://doi.org/10.1016/j.chemosphere.2022.134836.Search in Google Scholar PubMed
11. Tongo, I.; Onokpasa, A.; Emerure, F.; Balogun, P. T.; Enuneku, A. A.; Erhunmwunse, N.; Asemota, O.; Ogbomida, E.; Ogbeide, O.; Ezemonye, L. Levels, Bioaccumulation and Biomagnification of Pesticide Residues in a Tropical Freshwater Food Web. Int. J. Environ. Sci. Technol. 2022, 19 (3), 1467–1482; https://doi.org/10.1007/s13762-021-03212-6.Search in Google Scholar
12. Nasrollahzadeh, M.; Sajadi, S. M.; Sajjadi, M.; Issaabadi, Z. An Introduction to Nanotechnology. Interface Sci. Technol. 2019, 28, 1–27; https://doi.org/10.1016/B978-0-12-813586-0.00001-8.Search in Google Scholar
13. Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019, 25 (1), 112; https://doi.org/10.3390/molecules25010112.Search in Google Scholar PubMed PubMed Central
14. Linley, S.; Thomson, N. R. Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment. Water Air Soil Pollut. 2021, 232 (2), 59; https://doi.org/10.1007/s11270-021-04985-9.Search in Google Scholar
15. Ingle, A. P.; Seabra, A. B.; Duran, N.; Rai, M. Nanoremediation. In Microbial Biodegradation and Bioremediation; Elsevier: Singapore, 2014; pp 233–250.10.1016/B978-0-12-800021-2.00009-1Search in Google Scholar
16. Guerra, F. D.; Attia, M. F.; Whitehead, D. C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23 (7), 1760; https://doi.org/10.3390/molecules23071760.Search in Google Scholar PubMed PubMed Central
17. Braunschweig, J.; Bosch, J.; Meckenstock, R. U. Iron Oxide Nanoparticles in Geomicrobiology: From Biogeochemistry to Bioremediation. New Biotechnol. 2013, 30 (6), 793–802; https://doi.org/10.1016/j.nbt.2013.03.008.Search in Google Scholar PubMed
18. Iatrellis, O., Samaras, N., Kokkinos, K., & Chaikalis, C. Green Perspectives: Future Technology Professionals’ Views on Sustainability Practices. Green Energy Environ. Technol 2025. https://doi.org/10.5772/geet.20240070.Search in Google Scholar
19. Raffa, C. M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8 (7), 92; https://doi.org/10.3390/bioengineering8070092.Search in Google Scholar PubMed PubMed Central
20. Camacho-Morales, R. L.; Sánchez, J. E. Biotechnological Use of Fungi for the Degradation of Recalcitrant Agro-pesticides. In Mushroom Biotechnology; Elsevier: California, MA, 2016; pp 203–214.10.1016/B978-0-12-802794-3.00012-6Search in Google Scholar
21. Gariya, H. S.; Bhatt, A. Microbial Action on Degradation of Pesticides. In Microbial Technology for Sustainable Environment; Bhatt, P.; Gangola, S.; Udayanga, D.; Kumar, G., Eds.; Springer: Singapore, 2021; pp. 125–139.10.1007/978-981-16-3840-4_8Search in Google Scholar
22. Kiss, A.; Virág, D. Photostability and Photodegradation Pathways of Distinctive Pesticides. J. Environ. Qual. 2009, 38 (1), 157–163; https://doi.org/10.2134/jeq2007.0504.Search in Google Scholar PubMed
23. Kiss, A.; Virág, D. Interpretation and Modelling of Environmental Behaviour of Diverse Pesticides by Revealing Photodecomposition Mechanisms. Microchem. J. 2009, 92 (2), 119–122; https://doi.org/10.1016/j.microc.2008.12.002.Search in Google Scholar
24. Ramya, A.; Dhevagi, P.; Rakesh, S. S. Nanomaterials for Wastewater Remediation: Resolving Huge Problems with Tiny Particles. In Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences; Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H. C., Panchu, S. J., Prasad, R., Eds.; Springer International Publishing: Cham, 2022; pp 601–620.10.1007/978-3-030-80371-1_21Search in Google Scholar
25. Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O. P. Adsorptive Removal and Photocatalytic Degradation of Organic Pollutants Using Metal Oxides and Their Composites: A Comprehensive Review. Adv. Colloid Interface Sci. 2019, 272, 102009; https://doi.org/10.1016/j.cis.2019.102009.Search in Google Scholar PubMed
26. Odabasi Lee, S.; Lakhera, S. K.; Yong, K. Strategies to Enhance Interfacial Spatial Charge Separation for High‐Efficiency Photocatalytic Overall Water‐Splitting: A Review. Adv. Energy Sustain. Res. 2023, 4 (12), 2300130; https://doi.org/10.1002/aesr.202300130.Search in Google Scholar
27. Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9 (12), 2489; https://doi.org/10.3390/app9122489.Search in Google Scholar
28. Hupka, J.; Zaleska, A.; Janczarek, M.; Kowalska, E.; Górska, P.; Aranowski, R. UV/VIS Light-Enhanced Photocatalysis for Water Treatment and Protection. In Soil and Water Pollution Monitoring, Protection and Remediation, Vol. 69. NATO Science Series; Twardowska, I.; Allen, H. E.; Häggblom, M. M.; Stefaniak, S., Eds.; Springer: Netherlands, 2006; pp. 351–367.10.1007/978-1-4020-4728-2_23Search in Google Scholar
29. Ahmad, I.; Zou, Y.; Yan, J.; Liu, Y.; Shukrullah, S.; Naz, M. Y.; Hussain, H.; Khan, W. Q.; Khalid, N. Semiconductor Photocatalysts: A Critical Review Highlighting the Various Strategies to Boost the Photocatalytic Performances for Diverse Applications. Adv. Colloid Interface Sci. 2023, 311, 102830; https://doi.org/10.1016/j.cis.2022.102830.Search in Google Scholar PubMed
30. Abebe, B.; Gupta, N. K.; Tsegaye, D. A Critical Mini-review on Doping and Heterojunction Formation in ZnO-Based Catalysts. RSC Adv. 2024, 14 (25), 17338–17349; https://doi.org/10.1039/D4RA02568G.Search in Google Scholar
31. Park, H.; Kim, H.; Moon, G.; Choi, W. Photoinduced Charge Transfer Processes in Solar Photocatalysis Based on Modified TiO2. Energy Environ. Sci. 2016, 9 (2), 411–433; https://doi.org/10.1039/C5EE02575C.Search in Google Scholar
32. Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D. W.; Pan, J. H. Charge Carrier Trapping, Recombination and Transfer during TiO2 Photocatalysis: An Overview. Catal. Today 2019, 335, 78–90; https://doi.org/10.1016/j.cattod.2018.10.053.Search in Google Scholar
33. Fang, Y.; Shan, B. Enhancing Charge Separation by Lattice Coherency Engineering in Heterojunction Photocatalysis. Chem. Catal. 2022, 2 (1), 10–12; https://doi.org/10.1016/j.checat.2021.12.019.Search in Google Scholar
34. Zhang, P.; Wang, C.; Yu, D. Hot Electron Transfer Induced by Surface Plasmon in Ag/TiO2 System. Thin Solid Films 2024, 803, 140470; https://doi.org/10.1016/j.tsf.2024.140470.Search in Google Scholar
35. Abdullah, H. I.; Al-Amiery, A. A.; Al-Baghdadi, S. B. The Using of Nanomaterials as Catalysts for Photodegradations. J. Phys. Conf. Ser. 2021, 1853 (1), 012052; https://doi.org/10.1088/1742-6596/1853/1/012052.Search in Google Scholar
36. Prakash, J.; Swart, H. Plasmonic Photocatalysts as Emerging Multifunctional Nanomaterials for Energy and Environmental Applications. Phys. B Condens. Matter. 2023, 669, 415297; https://doi.org/10.1016/j.physb.2023.415297.Search in Google Scholar
37. DuBose, J. T.; Kamat, P. V. Probing Perovskite Photocatalysis. Interfacial Electron Transfer between CsPbBr3 and Ferrocene Redox Couple. J. Phys. Chem. Lett. 2019, 10 (20), 6074–6080; https://doi.org/10.1021/acs.jpclett.9b02294.Search in Google Scholar PubMed
38. Nassereddine, Y.; Benyoussef, M.; Asbani, B.; El Marssi, M.; Jouiad, M. Recent Advances toward Enhanced Photocatalytic Proprieties of BiFeO3-Based Materials. Nanomaterials 2023, 14 (1), 51; https://doi.org/10.3390/nano14010051.Search in Google Scholar PubMed PubMed Central
39. Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-Based Nanomaterials. Part Fibre Toxicol. 2019, 16 (1), 18; https://doi.org/10.1186/s12989-019-0299-z.Search in Google Scholar PubMed PubMed Central
40. Shi, X.; Cheng, C.; Peng, F.; Hou, W.; Lin, X.; Wang, X. Adsorption Properties of Graphene Materials for Pesticides: Structure Effect. J. Mol. Liq. 2022, 364, 119967; https://doi.org/10.1016/j.molliq.2022.119967.Search in Google Scholar
41. Mehta, J.; Dhaka, R. K.; Dilbaghi, N.; Lim, D. K.; Hassan, A. A.; Kim, K. H.; Kumar, S. Recent Advancements in Adsorptive Removal of Organophosphate Pesticides from Aqueous Phase Using Nanomaterials. J. Nanostruct. Chem. 2024, 14 (1), 53–70; https://doi.org/10.1007/s40097-022-00516-y.Search in Google Scholar
42. Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G. Nanotechnology-based Recent Approaches for Sensing and Remediation of Pesticides. J. Environ. Manage. 2018, 206, 749–762; https://doi.org/10.1016/j.jenvman.2017.11.037.Search in Google Scholar PubMed
43. Dhir, B. Nanomaterials for Remediation of Pesticides. In New Frontiers of Nanomaterials in Environmental Science; Kumar, R; Kumar, R; Kaur, G., Eds.; Springer: Singapore, 2021; pp. 193–204.10.1007/978-981-15-9239-3_8Search in Google Scholar
44. Boruah, P. K.; Sharma, B.; Hussain, N.; Das, M. R. Magnetically Recoverable Fe3O4/Graphene Nanocomposite towards Efficient Removal of Triazine Pesticides from Aqueous Solution: Investigation of the Adsorption Phenomenon and Specific Ion Effect. Chemosphere 2017, 168, 1058–1067; https://doi.org/10.1016/j.chemosphere.2016.10.103.Search in Google Scholar PubMed
45. Patle, T. K.; Kurrey, R.; Dewangan, K.; Shrivas, K. Degradation, Removal, and Detection of Pesticides Using Nanocomposites. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems; Elsevier: Amsterdam, 2020; pp 241–254.10.1016/B978-0-12-821354-4.00010-8Search in Google Scholar
46. Lazarević-Pašti, T.; Anićijević, V.; Baljozović, M.; Anićijević, D. V.; Gutić, S.; Vasić, V.; Skorodumova, N. V.; Pašti, I. A. The Impact of the Structure of Graphene-Based Materials on the Removal of Organophosphorus Pesticides from Water. Environ. Sci. Nano 2018, 5 (6), 1482–1494; https://doi.org/10.1039/C8EN00171E.Search in Google Scholar
47. Intisar, A.; Ramzan, A.; Sawaira, T.; Kareem, A. T.; Hussain, N.; Din, M. I.; Bilal, M.; Iqbal, H. M. Occurrence, Toxic Effects, and Mitigation of Pesticides as Emerging Environmental Pollutants Using Robust Nanomaterials – A Review. Chemosphere 2022, 293, 133538; https://doi.org/10.1016/j.chemosphere.2022.133538.Search in Google Scholar PubMed
48. Karimi, H.; Mahdavi, S.; Asgari Lajayer, B.; Moghiseh, E.; Rajput, V. D.; Minkina, T.; Astatkie, T. Insights on the Bioremediation Technologies for Pesticide-Contaminated Soils. Environ. Geochem. Health 2022, 44 (4), 1329–1354; https://doi.org/10.1007/s10653-021-01081-z.Search in Google Scholar PubMed
49. Singh, Y.; Saxena, M. K. Insights into the Recent Advances in Nano-bioremediation of Pesticides from the Contaminated Soil. Front. Microbiol. 2022, 13, 982611; https://doi.org/10.3389/fmicb.2022.982611.Search in Google Scholar PubMed PubMed Central
50. Tang, A.; Wang, B.; Liu, Y.; Li, Q.; Tong, Z.; Wei, Y. Biodegradation and Extracellular Enzymatic Activities of Pseudomonas aeruginosa Strain GF31 on β-cypermethrin. Environ. Sci. Pollut. Res. 2015, 22 (17), 13049–13057; https://doi.org/10.1007/s11356-015-4545-0.Search in Google Scholar PubMed
51. Cecchin, I.; Reddy, K. R.; Thomé, A.; Tessaro, E. F.; Schnaid, F. Nanobioremediation: Integration of Nanoparticles and Bioremediation for Sustainable Remediation of Chlorinated Organic Contaminants in Soils. Int. Biodeterior. Biodegrad. 2017, 119, 419–428; https://doi.org/10.1016/j.ibiod.2016.09.027.Search in Google Scholar
52. Ali, A.; Ahmed, Z.; Maqbool, R.; Shahzad, K.; Shah, Z. H.; Ali, M. Z.; Alsamadany, H.; Bilal, M. Nanobioremediation of Insecticides and Herbicides. In Biodegradation and Biodeterioration at the Nanoscale; Elsevier: Amsterdam, 2022; pp 655–674.10.1016/B978-0-12-823970-4.00023-3Search in Google Scholar
53. Ribeiro, L. F. M.; Reddy, K. R.; Chetri, J. K. Nanobioremediation of Insecticides and Herbicides. In Nano-bioremediation: Fundamentals and Applications; Elsevier: Amsterdam, 2022; pp 501–516.10.1016/B978-0-12-823962-9.00002-7Search in Google Scholar
54. Khanna, P.; Kaur, A.; Goyal, D. Algae-based Metallic Nanoparticles: Synthesis, Characterization and Applications. J. Microbiol. Methods 2019, 163, 105656; https://doi.org/10.1016/j.mimet.2019.105656.Search in Google Scholar PubMed
55. Husain, S.; Sardar, M.; Fatma, T. Screening of Cyanobacterial Extracts for Synthesis of Silver Nanoparticles. World J. Microbiol. Biotechnol. 2015, 31 (8), 1279–1283; https://doi.org/10.1007/s11274-015-1869-3.Search in Google Scholar PubMed
56. Singaravelu, G.; Arockiamary, J. S.; Kumar, V. G.; Govindaraju, K. A Novel Extracellular Synthesis of Monodisperse Gold Nanoparticles Using Marine Alga, Sargassum Wightii Greville. Colloids Surf. B. Biointerfaces 2007, 57 (1), 97–101; https://doi.org/10.1016/j.colsurfb.2007.01.010.Search in Google Scholar PubMed
57. Sen, P.; Bhattacharya, P.; Mukherjee, G.; Ganguly, J.; Marik, B.; Thapliyal, D.; Verma, S.; Verros, G. D.; Chauhan, M. S.; Arya, R. K. Advancements in Doping Strategies for Enhanced Photocatalysts and Adsorbents in Environmental Remediation. Technologies 2023, 11 (5), 144; https://doi.org/10.3390/technologies11050144.Search in Google Scholar
58. Kong, X. P.; Zhang, B. H.; Wang, J. Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology: A Review. J. Agric. Food Chem. 2021, 69 (24), 6735–6754; https://doi.org/10.1021/acs.jafc.1c01091.Search in Google Scholar PubMed
59. Sawicki, R.; Mercier, L. Evaluation of Mesoporous Cyclodextrin-Silica Nanocomposites for the Removal of Pesticides from Aqueous Media. Environ. Sci. Technol. 2006, 40 (6), 1978–1983; https://doi.org/10.1021/es051441r.Search in Google Scholar PubMed
60. Otalvaro, J. O.; Avena, M.; Brigante, M. Adsorption of Organic Pollutants by Amine Functionalized Mesoporous Silica in Aqueous Solution. Effects of pH, Ionic Strength and Some Consequences of APTES Stability. J. Environ. Chem. Eng. 2019, 7 (5), 103325; https://doi.org/10.1016/j.jece.2019.103325.Search in Google Scholar
61. Zainab, R.; Hasnain, M.; Ali, F.; Abideen, Z.; Siddiqui, Z. S.; Jamil, F.; Hussain, M.; Park, Y. K. Prospects and Challenges of Nanopesticides in Advancing Pest Management for Sustainable Agricultural and Environmental Service. Environ. Res. 2024, 261, 119722; https://doi.org/10.1016/j.envres.2024.119722.Search in Google Scholar PubMed
62. Kajitvichyanukul, P.; Nguyen, V. H.; Boonupara, T.; Phan Thi, L. A.; Watcharenwong, A.; Sumitsawan, S.; Udomkun, P. Challenges and Effectiveness of Nanotechnology-Based Photocatalysis for Pesticides-Contaminated Water: A Review. Environ. Res. 2022, 212, 113336; https://doi.org/10.1016/j.envres.2022.113336.Search in Google Scholar PubMed
63. Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A. A.; Kim, K. H. Nano-based Smart Pesticide Formulations: Emerging Opportunities for Agriculture. J. Contr. Release 2019, 294, 131–153; https://doi.org/10.1016/j.jconrel.2018.12.012.Search in Google Scholar PubMed
64. Kapinder, Dangi, K., Verma, A. K. Efficient & Eco-friendly Smart Nano-Pesticides: Emerging Prospects for Agriculture. Mater. Today Proc. 2021, 45, 3819–3824; https://doi.org/10.1016/j.matpr.2021.03.211.Search in Google Scholar
65. Del Prado-Audelo, M. L.; Bernal-Chávez, S. A.; Gutiérrez-Ruíz, S. C.; Hernández-Parra, H.; Kerdan, I. G.; Reyna-González, J. M.; Sharifi-Rad, J.; Leyva-Gómez, G. Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides; Oxid. Med. Cell Longev. 2022, 2022, 1–15; https://doi.org/10.1155/2022/5766199.Search in Google Scholar PubMed PubMed Central
66. Madhavi, V.; Reddy, A. V. B.; Madhavi, G.; Reddy, N. B. Nanoencapsulation of Pesticides: Sustainable Perspective in Agriculture. AIP Conf. Proc. 2020, 2280 (1), 040029; https://doi.org/10.1063/5.0018027.Search in Google Scholar
67. Mattos, B. D.; Tardy, B. L.; Pezhman, M.; Kämäräinen, T.; Linder, M.; Schreiner, W. H.; Magalhães, W. L. E.; Rojas, O. J. Controlled Biocide Release from Hierarchically-Structured Biogenic Silica: Surface Chemistry to Tune Release Rate and Responsiveness. Sci. Rep. 2018, 8 (1), 5555; https://doi.org/10.1038/s41598-018-23921-2.Search in Google Scholar PubMed PubMed Central
68. Milani, P.; França, D.; Balieiro, A. G.; Faez, R. Polymers and Its Applications in Agriculture. Polímeros 2017, 27 (3), 256–266; https://doi.org/10.1590/0104-1428.09316.Search in Google Scholar
69. Nair, R.; Varghese, S. H.; Nair, B. G.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. Nanoparticulate Material Delivery to Plants. Plant Sci. 2010, 179 (3), 154–163; https://doi.org/10.1016/j.plantsci.2010.04.012.Search in Google Scholar
70. Machado, T. O.; Grabow, J.; Sayer, C.; De Araújo, P. H. H.; Ehrenhard, M. L.; Wurm, F. R. Biopolymer-Based Nanocarriers for Sustained Release of Agrochemicals: A Review on Materials and Social Science Perspectives for a Sustainable Future of Agri- and Horticulture. Adv. Colloid Interface Sci. 2022, 303, 102645; https://doi.org/10.1016/j.cis.2022.102645.Search in Google Scholar PubMed
71. Rani, N.; Duhan, A.; Pal, A.; Kumari, P.; Beniwal, R. K.; Verma, D.; Goyat, A.; Singh, R. Are Nano-pesticides Really Meant for Cleaner Production? An Overview on Recent Developments, Benefits, Environmental Hazards and Future Prospectives. J. Clean Prod. 2023, 411, 137232; https://doi.org/10.1016/j.jclepro.2023.137232.Search in Google Scholar
72. Singh, P.; Tomar, B.; Patle, T.; Parihar, S. S.; Tomar, S. S.; Singh, D. S. Nanotechnology Solutions for Sustainable Pest and Disease Control for Sustainable Agriculture and Food Security. In Advances in Environmental Engineering and Green Technologies; Rajput, V. D., Singh, A., Ghazaryan, K., Alexiou, A., Said Al-Tawaha, A. R. M., Eds.; IGI Global: Pennsylvania, 2024; pp 193–215.10.4018/979-8-3693-1890-4.ch010Search in Google Scholar
73. Panoth, D.; Manikkoth, S. T.; Jahan, F.; Thulasi, K. M.; Paravannoor, A.; Vijayan, B. K. Nanosensors for Pesticide Detection in Soil. In Nanosensors for Smart Agriculture; Elsevier: Amsterdam, 2022; pp 237–258.10.1016/B978-0-12-824554-5.00002-1Search in Google Scholar
74. Verdian, A. Apta-nanosensors for Detection and Quantitative Determination of Acetamiprid – A Pesticide Residue in Food and Environment. Talanta 2018, 176, 456–464; https://doi.org/10.1016/j.talanta.2017.08.070.Search in Google Scholar PubMed
75. Christopher, F. C.; Kumar, P. S.; Christopher, F. J.; Joshiba, G. J.; Madhesh, P. Recent Advancements in Rapid Analysis of Pesticides Using Nano Biosensors: A Present and Future Perspective. J. Clean Prod. 2020, 269, 122356; https://doi.org/10.1016/j.jclepro.2020.122356.Search in Google Scholar
76. Mao, S.; Chang, J.; Pu, H.; Lu, G.; He, Q.; Zhang, H.; Chen, J. Two-dimensional Nanomaterial-Based Field-Effect Transistors for Chemical and Biological Sensing. Chem. Soc. Rev. 2017, 46 (22), 6872–6904; https://doi.org/10.1039/C6CS00827E.Search in Google Scholar
77. Gyanjyoti, A.; Guleria, P.; Awasthi, A.; Singh, K.; Kumar, V. Recent Advancement in Fluorescent Materials for Optical Sensing of Pesticides. Mater. Today Commun. 2023, 34, 105193; https://doi.org/10.1016/j.mtcomm.2022.105193.Search in Google Scholar
78. Marimuthu, M.; Xu, K.; Song, W.; Chen, Q.; Wen, H. Safeguarding Food Safety: Nanomaterials-Based Fluorescent Sensors for Pesticide Tracing. Food Chem. 2025, 463, 141288; https://doi.org/10.1016/j.foodchem.2024.141288.Search in Google Scholar PubMed
79. Jiang, W.; Li, Z.; Yang, Q.; Hou, X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit. Rev. Anal. Chem. 2024, 54 (7), 2636–2657; https://doi.org/10.1080/10408347.2023.2189955.Search in Google Scholar PubMed
80. Zhao, F.; Wu, J.; Ying, Y.; She, Y.; Wang, J.; Ping, J. Carbon Nanomaterial-Enabled Pesticide Biosensors: Design Strategy, Biosensing Mechanism, and Practical Application. TrAC Trends Anal. Chem. 2018, 106, 62–83; https://doi.org/10.1016/j.trac.2018.06.017.Search in Google Scholar
81. Kookana, R. S.; Boxall, A. B.; Reeves, P. T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T. F.; Gan, J.; Kah, M.; Lynch, I.; Ranville, J.; Sinclair, C.; Spurgeon, D.; Tiede, K.; Van den Brink, P. J. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62 (19), 4227–4240; https://doi.org/10.1021/jf500232f.Search in Google Scholar PubMed
82. Luo, S.; Wu, Y.; Gou, H. A Voltammetric Sensor Based on GO–MWNTs Hybrid Nanomaterial-modified Electrode for Determination of Carbendazim in Soil and Water Samples. Ionics 2013, 19 (4), 673–680; https://doi.org/10.1007/s11581-013-0868-3.Search in Google Scholar
83. Liu, S.; Yuan, L.; Yue, X.; Zheng, Z.; Tang, Z. Recent Advances in Nanosensors for Organophosphate Pesticide Detection. Adv. Powder Technol. 2008, 19 (5), 419–441; https://doi.org/10.1016/S0921-8831(08)60910-3.Search in Google Scholar
84. Yılmaz, F.; Saylan, Y.; Akgönüllü, S.; Çimen, D.; Derazshamshir, A.; Bereli, N.; Denizli, A., D., A., N., & A. Surface Plasmon Resonance Based Nanosensors for Detection of Triazinic Pesticides in Agricultural Foods. In New Pesticides and Soil Sensors; Elsevier: California, MA, 2017; pp 679–718.10.1016/B978-0-12-804299-1.00019-9Search in Google Scholar
85. Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X. Q.; Qian, J.; He, S.; Qu, J.; Coquet, P.; Yong, K. T. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-Based Surface Plasmon Resonance Biosensor. Sci. Rep. 2016, 6 (1), 28190; https://doi.org/10.1038/srep28190.Search in Google Scholar PubMed PubMed Central
86. Rhouati, A.; Majdinasab, M.; Hayat, A. A Perspective on Non-enzymatic Electrochemical Nanosensors for Direct Detection of Pesticides. Curr. Opin. Electrochem. 2018, 11, 12–18; https://doi.org/10.1016/j.coelec.2018.06.013.Search in Google Scholar
87. Zhou, C.; Feng, J.; Tian, Y.; Wu, Y.; He, Q.; Li, G. Non-enzymatic Electrochemical Sensors Based on Nanomaterials for Detection of Organophosphorus Pesticide Residues. Environ. Sci. Adv. 2023, 2 (7), 933–956; https://doi.org/10.1039/D3VA00045A.Search in Google Scholar
88. Dissanayake, N. M.; Arachchilage, J. S.; Samuels, T. A.; Obare, S. O. Highly Sensitive Plasmonic Metal Nanoparticle-Based Sensors for the Detection of Organophosphorus Pesticides. Talanta 2019, 200, 218–227; https://doi.org/10.1016/j.talanta.2019.03.042.Search in Google Scholar PubMed
89. Daneshyar, H.; Dalali, N.; Ahmadi, S. H. Colorimetric Determination of Diazinon in Environmental Water Samples Based on Sensitive Localized Surface Plasmon Resonance of Silver Nanoparticles. Iran. J. Chem. Chem. Eng. 2023, 42 (6), 1811–1820; https://doi.org/10.30492/ijcce.2022.560192.5518.Search in Google Scholar
90. Ahirwar, N. K. Advanced Pesticide Nano Formulations and Understanding Their Breakdown by Bacteria. Indian J. Microbiol. Res. 2023, 10 (4), 193–201; https://doi.org/10.18231/j.ijmr.2023.035.Search in Google Scholar
91. Verma, R.; Saroop, S. Impact of Nanopesticides in the Environment: Solutions, Threats, and Opportunities. In Pesticides in a Changing Environment; Elsevier: Oxford, 2024; pp 251–292.10.1016/B978-0-323-99427-9.00010-0Search in Google Scholar
92. Hajji-Hedfi, L.; Chhipa, H. Nano-based Pesticides: Challenges for Pest and Disease Management. Eur.-Mediterr. J. Environ. Integr. 2021, 6 (3), 69; https://doi.org/10.1007/s41207-021-00279-y.Search in Google Scholar
93. Kah, M.; Walch, H.; Hofmann, T. Environmental Fate of Nanopesticides: Durability, Sorption and Photodegradation of Nanoformulated Clothianidin. Environ. Sci. Nano 2018, 5 (4), 882–889; https://doi.org/10.1039/c8en00038g.Search in Google Scholar PubMed PubMed Central
94. Batley, G. E.; Kirby, J. K.; McLaughlin, M. J. Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Acc. Chem. Res. 2013, 46 (3), 854–862; https://doi.org/10.1021/ar2003368.Search in Google Scholar PubMed
95. Pandey, S.; Giri, K.; Kumar, R.; Mishra, G.; Raja Rishi, R. Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1287–1308; https://doi.org/10.1007/s40011-016-0791-2.Search in Google Scholar
96. Damasco, J. A.; Ravi, S.; Perez, J. D.; Hagaman, D. E.; Melancon, M. P. Understanding Nanoparticle Toxicity to Direct a Safe-By-Design Approach in Cancer Nanomedicine. Nanomaterials 2020, 10 (11), 2186; https://doi.org/10.3390/nano10112186.Search in Google Scholar PubMed PubMed Central
© 2025 IUPAC & De Gruyter