Startseite Synthesis, characterization and cytotoxic behavior against HeLa of iridium (III) complexes, half sandwich type
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, characterization and cytotoxic behavior against HeLa of iridium (III) complexes, half sandwich type

  • Gloria Florenciano-López , Isabel Romero-Castellón , Alfonso Canales-Martínez , Rosa María Pérez-Pastor , Gloria Víllora-Cano und Gabriel García-Sánchez ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. April 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

In this paper, we describe the synthesis and characterization of iridium (III) half sandwich complexes of stoichiometry [Cp+IrCl2L] with Cp+ = η5-C5 EtMe4; L = alanine anhydride (I), ortho- (II) and para-aminophenol (III). For comparative purposes, the ionic complex [Cp*IrCl(o-phen)](PF6); Cp* = (η5-C5Me5) (IV) has been also synthesized and characterized. All the isolated complexes have been characterised by C, H and N elemental analysis; infrared and 1H nuclear magnetic resonance spectroscopies; 1H–1H COSY; mass spectrometry (ESI/TOF), thermogravimetry and, in the case of (IV), by conductivity measurements. The cytotoxic behaviour of the isolated complexes was studied against HeLa and complexes (III) and (IV) were found to have an IC50 close to 160–170 μm, quite close to the IC50 value of cisplatin which was found to be 134.7 μm, indicating that they are good cytotoxic agents. However, complexes (I) and (II) showed IC50 values above 250 μm indicating their low cytotoxicity.


Corresponding author: Gabriel García-Sánchez, Departamento de Química Inorgánica, Facultad de Química, Campus Regional de Excelencia, “Campus Mare Nostrum”, Universidad de Murcia, 30071, Murcia, Spain, e-mail: . SCOPUS: 57219804977

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: G. F-L; research. I. R-C; research. A. C-M; analytical and spectroscopic studies. R. M. P-P; cytotoxicity studies. G. V-C; co-direction. G. G-S; direction.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All authors state no conflict of interest.

  6. Research funding: This work has been supported by grant ref. TED2021-130389B-C21 funded by MCIN/AEI/10.13039/501100011033.

  7. Data availability: Not applicable.

References

1. Kelland, L. The Resurgence of Platinum-based Cancer Chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584; https://doi.org/10.1038/nrc2167.Suche in Google Scholar PubMed

2. Wang, D.; Lippard, S. J. Cellular Processing of Platinum Anticancer Drugs. Nat. Rev. Drug Discovery 2005, 4, 307–320; https://doi.org/10.1038/nrd1691.Suche in Google Scholar PubMed

3. Ma, D. L.; Wang, M.; Mao, Z.; Yang, C.; Ng, C. T.; Leung, C. H. Rhodium Complexes as Therapeutic Agents. Dalton Trans. 2016, 45, 2762–2771; https://doi.org/10.1039/c5dt04338g.Suche in Google Scholar PubMed

4. Yellol, G. S.; Donaire, A.; Vasylyeva, V.; Janiak, C.; Ruiz, J. On the Antitumor Properties of Novel Cyclometalated Benzimidazole Ru (II), Ir (III) and Rh (III) Complexes. Chem. Commun. 2013, 49, 11533–11535; https://doi.org/10.1039/c3cc46239k.Suche in Google Scholar PubMed

5. Leung, C. H.; Zhong, H. J.; Chan, D. S. H.; Ma, D. L. Bioactive Iridium and Rhodium Complexes as Therapeutic Agents. Coord. Chem. Rev. 2013, 257, 1764–1776; https://doi.org/10.1016/j.ccr.2013.01.034.Suche in Google Scholar

6. Coverdale, J. P. C.; Romero-Canelon, I.; Sanchez-Cano, C.; Clarkson, G. J.; Habtemarian, A.; Wills, M.; Sandler, P. J. Asymmetric Transfer Hydrogenation by Synthetic Catalysts in Cancer Cells. Nat. Chem. 2018, 10, 347–354; https://doi.org/10.1038/nchem.2918.Suche in Google Scholar PubMed

7. Hearn, J. M.; Romero-Canelon, I.; Qamar, B.; Liu, Z.; Hands-Portman, I.; Sandler, P. J. The Potent Oxidant Anticancer Activity of Organoiridium, Catalysts. ACS Chem. Biol. 2013, 213 (8), 1335–1343.Suche in Google Scholar

8. Liu, W.; Gust, R. Metal N-heterocyclic Carbene Complexes as Potential Antitumor Metallodrugs. Chem. Soc. Rev. 2013, 42, 755–773; https://doi.org/10.1039/c2cs35314h.Suche in Google Scholar PubMed

9. Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic Anticancer Compounds. J. Med. Chem. 2013, 56, 1291–1300.Suche in Google Scholar

10. Hartinger, C. G.; Metzler-Nolte, N.; Dyson, P. J. Ruthenium(II)−Arene RAPTA Type Complexes Containing Curcuminand Bisdemethoxycurcumin Display Potent and Selective Anticancer Activity. Organometallics 2012, 31, 5677–5685; https://doi.org/10.1021/om300373t.Suche in Google Scholar

11. Romero-Canelon, I.; Salassa, L.; Sadler, P. J. The Contrasting Activity of Iodido Versus Chlorido Ruthenium andOsmium Arene Azo- and Imino-pyridine Anticancer Complexes: Control of Cell Selectivity, Cross-Resistance, p53 Dependence, andApoptosis Pathway. J. Med. Chem. 2013, 56, 1291–1300; https://doi.org/10.1021/jm3017442.Suche in Google Scholar PubMed

12. Ballester, F. J.; Ortega, E.; Porto, V.; Kostrhunova, H.; Davila-Ferreira, N.; Bautista, D.; Brabec, V.; Dominguez, F.; Santana, M. D.; Ruiz, J. New Half-sandwich Ruthenium(II) Complexes as Proteosynthesis Inhibitors in Cancer Cells. Chem. Commun. 2019, 55, 1140–1143; https://doi.org/10.1039/c8cc09211g.Suche in Google Scholar PubMed

13. Ni, W. X.; Man, W. L.; Yiu, S. M.; Ho, M.; Cheung, M. T. W.; Ko, C. C.; Che, C. M.; Lam, Y. W.; Lau, T. C. Halide Control of N, N-Coordination Versus N, C-Cyclometalation and Stereospecific Phenyl Ring Deuteration of Osmium(II) p-CymenePhenylazobenzothiazole Complexes. Chem. Sci. 2012, 3, 1582–1588; https://doi.org/10.1039/c2sc01031c.Suche in Google Scholar

14. Ortega, E.; Ballester, F.; Hernandez-Garcia, A.; Hernandez-Garcia, S.; Guerrero-Rubio, M. A.; Bautista, D.; Santana, M. D.; Gandia-Herrero, J.; Ruiz, J. Novel Organo-osmium(ii) Proteosynthesis Inhibitors Active Against Human Ovarian Cancer Cells Reduce Gonad Tumor Growth in Caenorhabditis elegans. Inorg. Chem. Front. 2021, 8, 141–155; https://doi.org/10.1039/c9qi01704f.Suche in Google Scholar

15. Dabroviak, J. C. Metals in Medicine; John Wiley and Sons Ltd.: Chichester, 2009; p. 149.Suche in Google Scholar

16. Domotorr, O.; Pape, V. F. S.; May, N. V.; Szakac, G.; Enyedy, E. A. Comparative Solution Equilibrium Studies of Antitumor Ruthenium (η6 -p-cymene) and Rhodium (η5 -C5Me5) Complexes of 8-hydroxyquinolines. Dalton Trans. 2017, 46, 4382–4396; https://doi.org/10.1039/c7dt00439g.Suche in Google Scholar PubMed

17. Liu, Z.; Salassa, L.; Habtemarian, A.; Pizarro, A. M.; Clarkson, G. J.; Sadler, P. J. Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C∧N-Chelated and Pyridine Ligands. Inorg. Chem. 2011, 50, 5777–5783.Suche in Google Scholar

18. Zhu, Z.; Wang, Z.; Hao, Y.; Zhu, C.; Jiao, J.; Chen, H.; Wang, Y. –M.; Yan, J.; Guo, Z.; Wang, X. Glutathione Boosting the Cytotoxicity of a Magnetic Platinum(IV) Nano-prodrug in Tumor Cells. Chem. Sci. 2016, 7, 2864–2869; https://doi.org/10.1039/c5sc04049c.Suche in Google Scholar PubMed PubMed Central

19. Dilruba, S.; Kalayda, G. V. Platinum-based Drugs: Past, Present and Future. Cancer Chemother. Pharmacol 2016, 77, 1103–1124; https://doi.org/10.1007/s00280-016-2976-z.Suche in Google Scholar PubMed

20. Johnstone, C. T.; Suntharalingam, K.; Lippard, J. S. The Next Generation of Platinum Drugs: Targeted Pt (II) Agents, Nanoparticle Delivery, and Pt (IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486; https://doi.org/10.1021/acs.chemrev.5b00597.Suche in Google Scholar PubMed PubMed Central

21. Hartinger, C. G.; Metzler-Nolte, N.; Dyson, P. J. Challenges and Opportunities in the Development of Organometallic Anticancer Drugs. Organometallics 2012, 31, 5677–5685; https://doi.org/10.1021/om300373t.Suche in Google Scholar

22. Liu, Z.; Romero-Canelon, I.; Qamar, B.; Hearn, J. M.; Habtemariam, A.; Barry, N. P.; Pizarro, A. M.; Clarkson, G. K.; Sadler, P. J. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts. Angew. Chem., Int. Ed. 2014, 53, 3941–3946; https://doi.org/10.1002/anie.201311161.Suche in Google Scholar PubMed PubMed Central

23. Li, Y.; Tan, C. P.; Zhang, W.; He, L.; Ji, L. N.; Mao, Z. W. Phosphorescent Iridium(III)-bis-N-heterocyclic Carbene Complexes as Mitochondria-targeted Theranostic and Photodynamic Anticancer Agents. Biomaterials 2015, 39, 95–104; https://doi.org/10.1016/j.biomaterials.2014.10.070.Suche in Google Scholar PubMed

24. Liu, Z.; Habtemariam, A.; Pizarro, A. M.; Fletcher, S. a.; Kisova, A.; Vrana, O.; Salassa, L.; Buijninex, P. C. A.; Clarkson, G. J.; Brabec, V.; Sadler, P. J. Organometallic Half-Sandwich Iridium Anticancer Complexes. J. Med. Chem. 2011, 54, 3011–3026; https://doi.org/10.1021/jm2000932.Suche in Google Scholar PubMed

25. Wang, C.; Liu, J.; Tian, Z.; Tian, M.; Tian, L.; Zhao, W.; Liu, Z. Half-sandwich Iridium N-heterocyclic Carbene Anticancer Complexes. Dalton Trans. 2017, 46, 6870–6883; https://doi.org/10.1039/c7dt00575j.Suche in Google Scholar PubMed

26. He, L.; Tan, C. P.; Ye, R. R.; Yao, Y. Z.; Liu, Y. H.; Zhao, Q.; Ji, L. N.; Mao, Z. W.; He, L.; Tan, C. P.; Ye, R. R.; Yao, Y. Z.; Liu, Y. H.; Zhao, Q.; Ji, L. N.; Mao, Z. W. Half-sandwich Iridium N-heterocyclic Carbene Anticancer Complexes. Angew. Chem., Int. Ed. 2014, 53, 12137–12141; https://doi.org/10.1002/anie.201407468.Suche in Google Scholar PubMed

27. Hearn, J. M.; Romero-Canelon, I.; Qamar, B.; Liu, Z.; Hands-Portman, I.; Sadler, P. J. Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis. ACS Chem. Biol. 2013, 8, 1335–1343; https://doi.org/10.1021/cb400070a.Suche in Google Scholar PubMed PubMed Central

28. Novohradsky, V.; Zerzankova, L.; Stepankova, J.; Kisova, A.; Kostrhunova, H.; Liu, Z.; Sadler, P. J.; Kasparkova, J.; Brabec, V. A Dual-targeting, Apoptosis-inducing Organometallic Half-sandwich Iridium Anticancer Complex. Metallomics 2014, 6, 1491–1501; https://doi.org/10.1039/c4mt00112e.Suche in Google Scholar PubMed

29. Liu, Z.; Habtemarian, A.; Pizarro, A.; Clarkson, G. J.; Sadler, P. J. Organometallic Iridium (III) Cyclopentadienyl Anticancer Complexes Containing C, N-chelating Ligands. Organometallics 2011, 30, 4702–4710; https://doi.org/10.1021/om2005468.Suche in Google Scholar

30. Liu, Z.; Lebrun, V.; Kitanosono, T.; Mallin, H.; Köler, V.; Häussinger, D.; Hilvert, D.; Kobayashi, S.; Ward, T. R. Upregulation of an Artificial Zymogen by Proteolysis. Angew. Chem., Int. Ed. 2016, 55, 11587–11590; https://doi.org/10.1002/anie.201605010.Suche in Google Scholar PubMed

31. Liu, Z.; Salassa, L.; Habtemariam, A.; Pizarro, A. M.; Clarkson, G. J.; Sadler, P. J. Contrasting Reactivity and Cancer Cell Cytotoxicity of Isoelectronic Organometallic Iridium(III) Complexes. Inorg. Chem. 2011, 50, 5777–5783; https://doi.org/10.1021/ic200607j.Suche in Google Scholar PubMed

32. He, L.; Li, Y.; Tan, C.-P.; Ye, R.-R.; Chen, M.; Cao, J.-J.; Ji, L.-N.; Mao, Z.-W. Cyclometalated Iridium(III) Complexes as Lysosome-targeted Photodynamic Anticancer and Real-time Tracking Agents. Chem. Sci. 2015, 2015 (6), 5401–5418.10.1039/C5SC01955ASuche in Google Scholar PubMed PubMed Central

33. Liu, Z.; Sadler, P. J. Formation of Glutathione Sulfenate and Sulfinate Complexes by an Organoiridium (III) Anticancer Complex. Inorg. Chem. Front. 2014, 1, 668–672; https://doi.org/10.1039/c4qi00098f.Suche in Google Scholar

34. Liu, Z.; Romero-Canelon, Z.; Habtemariam, A.; Clarkson, G. J.; Sadler, P. J. Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C∧N-Chelated and Pyridine Ligands. Organometallics 2014, 33, 5324–5333; https://doi.org/10.1021/om500644f.Suche in Google Scholar PubMed PubMed Central

35. Giambastiani, G.; Tuconi, L.; Kuhlman, R. L.; Hustad, P. D. Imino-and Amido-Pyridinate d-Block Metal Complexes in Polymerization/Oligomerization Catalysis. In Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I, Vol. 34; Springer, 2011; pp. 197–281.10.1007/978-90-481-3815-9_5Suche in Google Scholar

36. Xiong, X.; Liu, L.-Y.; Mao, Z.-W.; Zou, T. Approaches Towards Understanding the Mechanism-of-action of Metallodrugs. Coord. Chem. Rev. 2022, 453, 214311; https://doi.org/10.1016/j.ccr.2021.214311.Suche in Google Scholar

37. Peng, K.; Zheng, Y.; Xia, W.; Mao, Z.-W. Organometallic Anti-tumor Agents: Targeting from Biomolecules to Dynamic Bioprocesses. Chem. Soc. Rev. 2023, 52, 2790–2832; https://doi.org/10.1039/d2cs00757f.Suche in Google Scholar PubMed

38. Kastner, A.; Mendrina, T.; Bachmann, F.; Berger, W.; Keppler, B. K.; Heffeter, P.; Kowol, C. R. Tumor-Targeted Dual-Action NSAID-Platinum(IV) Anticancer Prodrugs. Inorg. Chem. Front. 2023, 10, 4126–4138; https://doi.org/10.1039/d3qi00968h.Suche in Google Scholar PubMed PubMed Central

39. Ribeiro, G. H.; Costa, A. R.; de Souza, A. R.; da Silva, F. V.; Martins, F. T.; Plutin, A. M.; Batista, A. A. An Overview on the Anticancer Activity of Ru(II)/Acylthiourea Complexes. Coord. Chem. Rev. 2023, 488, 215161; https://doi.org/10.1016/j.ccr.2023.215161.Suche in Google Scholar

40. Li, J.; Chen, T. Transition Metal Complexes as Photosensitizers for Integrated Cancer Theranostic Applications. Coord. Chem. Rev. 2020, 418, 213355; https://doi.org/10.1016/j.ccr.2020.213355.Suche in Google Scholar

41. He, X.; Wei, L.; Chen, J.; Ge, S.; Kandawa-Shultz, M.; Shao, G.; Wang, Y. Folate-targeted Iridium Complexes Amplify Photodynamic Therapy Efficacy Through Ferroptosis. Inorg. Chem. Front. 2023, 10, 4780–4788; https://doi.org/10.1039/d3qi00908d.Suche in Google Scholar

42. Yuan, H.; Han, Z.; Chen, Y.; Qi, F.; Fang, H.; Guo, Z.; Zhang, S.; He, W. Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and its Synergism with Apoptosis in Tumor Cell Inhibition. Angew. Chem., Int. Ed. 2021, 60, 8174–8181; https://doi.org/10.1002/anie.202014959.Suche in Google Scholar PubMed

43. Liu, X.; Lv, A.; Zhang, P.; Chang, J.; Dong, R.; Liu, M.; Liu, J.; Huang, X.; Yuan, X-A.; Liu, Z. The Anticancer Application of Half-sandwich Iridium(iii) Ferrocene-thiosemicarbazide Schiff Base Complexes. Dalton Trans. 2024, 53, 552–563; https://doi.org/10.1039/d3dt02879h.Suche in Google Scholar PubMed

44. Angeles Pujante-Galián, María; Pérez, Sergio A.; Montalbán, Mercedes G.; Carissimi, Guzmán; Fuster, Marta G.; Víllora, Gloria; García, Gabriel P-Cymene Complexes of Ruthenium (II) as Antitumor Agents. Molecules 2020, 25, 5063–5077; https://doi.org/10.3390/molecules25215063.Suche in Google Scholar PubMed PubMed Central

45. Fuster, Marta G.; Moulefera, Imane; Montalban, Mercedes G.; Pérez, José; Víllora, Gloria; García, Gabriel Synthesis and Characterization of New Ruthenium (II) Complexes of Stoichiometry [Ru(p-Cymene) Cl2L] and Their Cytotoxicity Against HeLa-Type Cancer Cells. Molecules 2022, 27, 7264–7275; https://doi.org/10.3390/molecules27217264.Suche in Google Scholar PubMed PubMed Central

46. Sáez, Natalia; Canales-Martínez, Alfonso; Fuster, Marta G.; Moulefera, Imane; Bautista, Delia; Pérez, José Gloria Víllora and Gabriel García, Synthesis and Characterization of New Iridium(III) Complexes Containing the Fragment [Cp*IrCl2] and the Ligands 2- and 4-aminobenzonitryl and 2- and 4-aminopyridine. J. Coord. Chem. 2024, 516–524; https://doi.org/10.1080/00958972.2024.2343787.Suche in Google Scholar

47. Canales-Martínez, Alfonso; Pérez Pastor, Rosa María; Víllora, Gloria; García, Gabriel. Pure Appl. Chem. 2024. (in the press).Suche in Google Scholar

48. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds (Part B), 6th Ed.; John Wiley & Sons, INC.: Hooboken, New Jersey, USA, 2009.10.1002/9780470405840Suche in Google Scholar

49. Geary, W. G. The Use of Conductivity Measurements in Organic Solvents for the Characterisation Compounds. Coord. Chem. Rev. 1971, 7, 81–122; https://doi.org/10.1016/s0010-8545(00)80009-0.Suche in Google Scholar

50. Eisenbrand, G.; Pool-Zobel, B.; Baker, V.; Balls, M.; Blaauboer, B. J.; Boobis, A.; Carere, A.; Kevekordes, S.; Lhuguenot, J-C.; Pieters, R.; Kleiner, J. Methods of in Vitro Toxicology. Food Chem. Toxicol. 2002, 40, 193–236; https://doi.org/10.1016/s0278-6915(01)00118-1.Suche in Google Scholar PubMed

51. Zoehler, B.; Melo de Aguiar, A.; Ferreira Silveira, G. SAEDC: Development of a Technological Solution for Exploratory Data Analysis and Statistics in Cytotoxicity. Pharm. Stat. 2003, 2, 167–174.Suche in Google Scholar

52. AAT Bioquest, Inc. Quest GrafTM IC50 Calculator; AAT Bioquest, 2022.Suche in Google Scholar

53. Dooley, T.; Fairhurst, G.; Tiza, C. T.; Tabataian, K.; Blanco, C. Ethyltetramethylcyclopentadienyl Complexes of Cobalt, Rhodium, Iridium and Ruthenium. Trans. Metal Chem. 1978, 3, 299–302.10.1007/BF01393574Suche in Google Scholar

54. Bennett, M. A.; Huang, T. N.; Matheson, T. W.; Smith, K. Inorganic Synthesis, Vol. 21; John Wiley & Sons: Hoboken, NJ, USA, 1982; pp. 74–77.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0386).


Published Online: 2025-04-11

© 2025 IUPAC & De Gruyter

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0386/html
Button zum nach oben scrollen