Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
Abstract
Consumer demand for food safety and quality is driving innovation in eco-friendly and intelligent food packaging. This intelligent packaging can monitor product quality and reduce the risk of spoilage. One innovation uses natural indicators, such as curcumin, which is sensitive to changes in pH and can detect food spoilage. Research on intelligent packaging with curcumin indicators based on ganyong starch with nanocellulose from corn husk has never been done. Isolation of nanocellulose from corn husk produced a yield of 40.84 %. Morphological analysis showed irregular shape and size, with crystallinity of 57.77 % and an average particle size of 230.9 nm. Tests on vaname shrimp (Litopenaeus vannamei) showed that the ganyong-nanocellulose-curcumin film can monitor the freshness of shrimp through color changes from yellow to red under alkaline conditions, indicating spoilage. Ammonia during spoilage caused weight loss, soft texture, and increased TVBN value. Curcumin-based indicators affect intelligent packaging properties, reducing moisture content, water vapor transmission rate, solubility, and elongation while increasing tensile strength, density, and thickness. This intelligent packaging film has great potential for monitoring seafood freshness, making it a promising innovation.
Funding source: The Ministry of Education and Culture, Research and Technology of the Republic of Indonesia
Award Identifier / Grant number: Contract Number: 027/E5/PG.02.00.PL/2024 Date June
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The Ministry of Education and Culture, Research and Technology of the Republic of Indonesia for the research grant funding year 2024 with Contract Number: 027/E5/PG.02.00.PL/2024 Date June 11th, 2024 and 22040/IT3.D10/PT.01.02/P/B/2024 Date 12th June, 2024.
-
Data availability: Not applicable.
References
1. Bumbudsanpharoke, N.; Ko, S. Nanomaterial-Based Optical Indicators: Promise, Opportunities, and Challenges in the Development of Colorimetric Systems for Intelligent Packaging. Nano Res. 2019, 12 (12), 489–500. https://doi.org/10.1007/s12274-018-2237-z.Search in Google Scholar
2. Pacquit, A.; Lau, K. T.; McLaughlin, H.; Frisby, J.; Quilty, B.; Diamond, D. Development of a Volatile Amine Sensor for the Monitoring of Fish Spoilage. Talanta 2006, 69 (2), 515–520. https://doi.org/10.1016/j.talanta.2005.10.046.Search in Google Scholar PubMed
3. Kuswandi, B. Toward Smarter Food Packaging. In Food Packaging: The Smarter Way; Springer Nature Singapore: Singapore, 2022; pp. 11–29.10.1007/978-981-16-7196-8_2Search in Google Scholar
4. Vedove, T. M.; Maniglia, B. C.; Tadini, C. C. Production of Sustainable Intelligent Packaging Based on Cassava Starch and Anthocyanin by an Extrusion Process. J. Food Eng. 2021, 289, 110274. https://doi.org/10.1016/j.jfoodeng.2020.110274.Search in Google Scholar
5. Marpaung, A. M. Potensi Pewarna Alami Lokal Untuk Industri Pangan. Food Rev. 2018, 13.Search in Google Scholar
6. Araujo, J. A.; Azeem, M.; Venkatesh, C.; Mojicevic, M.; Fournet, M. B.; Attallah, O. A. Color Stability Enhancement of Curcumin Bioplastic Films Using Natural Hybrid Fillers of Montmorillonite and Revalorized Cellulose. ACS Sustain. Chem. Eng. 2023, 11 (26), 9696–9710. https://doi.org/10.1021/acssuschemeng.3c01466.Search in Google Scholar
7. Aliabbasi, N.; Fathi, M.; Emam-Djomeh, Z. Curcumin: A Promising Bioactive Agent for Application in Food Packaging Systems. J. Environ. Chem. Eng. 2021, 9 (4), 105520. https://doi.org/10.1016/j.jece.2021.105520.Search in Google Scholar
8. Perumal, A. B.; Sellamuthu, P. S.; Nambiar, R. B.; Sadiku, E. R. Development of Polyvinyl Alcohol/Chitosan Bio-Nanocomposite Films Reinforced with Cellulose Nanocrystals Isolated from Rice Straw. Appl. Surf. Sci. 2018, 449 (449), 591–602. https://doi.org/10.1016/j.apsusc.2018.01.022.Search in Google Scholar
9. Chen, H. Z.; Zhang, M.; Bhandari, B.; Yang, C. H. Novel pH-Sensitive Films Containing Curcumin and Anthocyanins to Monitor Fish Freshness. Food Hydrocolloids 2020, 100, 105438. https://doi.org/10.1016/j.foodhyd.2019.105438.Search in Google Scholar
10. Sundari, R. Pemanfaatan dan efisiensi kurkumin kunyit (Curcuma domestica Val) sebagai indikator titrasi asam basa. Teknoin 2016, 22 (8). https://doi.org/10.20885/teknoin.vol22.iss8.art5.Search in Google Scholar
11. Wang, L.; Xue, J.; Zhang, Y.. Preparation and Characterization of Curcumin Loaded Caseinate/Zein Nanocomposite Film Using pH-Driven Method. Ind. Crops Prod. 2019, 130, 71–80. https://doi.org/10.1016/j.apsusc.2018.01.022.Search in Google Scholar
12. Duan, M.; Yu, S.; Sun, J.; Jiang, H.; Zhao, J.; Tong, C.; Wu, C. Development and Characterization of Electrospun Nanofibers Based on Pullulan/Chitin Nanofibers Containing Curcumin and Anthocyanins for Active-Intelligent Food Packaging. Int. J. Biol. Macromol. 2021, 187 (187), 332–340. https://doi.org/10.1016/j.ijbiomac.2021.07.140.Search in Google Scholar PubMed
13. Liu, J.; Wang, H.; Wang, P.; Guo, M.; Jiang, S.; Li, X.; Jiang, S. Films Based on κ- Carrageenan Incorporated with Curcumin for Freshness Monitoring. Food Hydrocolloids 2018, 83 (83), 134–142. https://doi.org/10.1016/j.foodhyd.2018.05.012.Search in Google Scholar
14. Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Intelligent Edible Films Based on Gelatin and Curcumin. Food Hydrocolloids 2017, 66, 8–15. https://doi.org/10.1016/j.foodhyd.2016.11.007.Search in Google Scholar
15. Bojorges, H.; Ríos‐Corripio, M. A.; Hernández‐Cázares, A. S.; Hidalgo‐Contreras, J. V.; Contreras‐Oliva, A. Effect of the Application of an Edible Film with Turmeric (Curcuma Longa L.) on the Oxidative Stability of Meat. Food Sci. Nutr. 2020, 8 (8), 4308–4319. https://doi.org/10.1002/fsn3.1728.Search in Google Scholar PubMed PubMed Central
16. Wu, C.; Sun, J.; Chen, M.; Ge, Y.; Ma, J.; Hu, Y.; Yan, Z. Effect of Oxidized Chitin Nanocrystals and Curcumin into Chitosan Films for Seafood Freshness Monitoring. Food Hydrocolloids 2019, 95, 308–317; https://doi.org/10.1016/j.foodhyd.2019.04.047.Search in Google Scholar
17. Almeida, C. M.; Magalhães, J. M.; Souza, H. K.; Gonçalves, M. P. The Role of Choline Chloride-Based Deep Eutectic Solvent and Curcumin on Chitosan Films Properties. Food Hydrocoll. 2018, 81, 456–466. https://doi.org/10.1016/j.foodhyd.2018.03.025.Search in Google Scholar
18. Bajpai, S. K.; Chand, N.; Ahuja, S. Investigation of Curcumin Release from Chitosan/Cellulose Microcrystals (CMC) Antimicrobial Films. Int. J. Biol. Macromol. 2015, 79, 440–448. https://doi.org/10.1016/j.ijbiomac.2015.05.012.Search in Google Scholar PubMed
19. Petchana, N.; Phoopiam, N.; Thiraphattaraphun, L. Natural pH Indicator from Tapioca Starch/Curcumin Film. AIP Conf. Proc. 2020, 2279 (1). https://doi.org/10.1063/5.0023184.Search in Google Scholar
20. Baysal, G.; Doğan, F. Investigation and Preparation of Biodegradable Starch-Based Nanofilms for Potential Use of Curcumin and Garlic in Food Packaging Applications. J. Biomater. Sci., Polym. Ed. 2020, 31 (9), 1127–1143. https://doi.org/10.1080/09205063.2020.1743947.Search in Google Scholar PubMed
21. Baek, S. K.; Song, K. B. Characterization of Active Biodegradable Films Based on Proso Millet Starch and Curcumin. Starch‐Stärke 2019, 71, 3–4. 1800174 https://doi.org/10.1002/star.201800174.Search in Google Scholar
22. Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical Properties of Flours and Starches Derived from Traditional Indonesian Tubers and Roots. J. Food Sci. Technol. 2014, 51 (12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5.Search in Google Scholar PubMed PubMed Central
23. Greenwood, C. T.; Munro, D. N. Carbohydrates. In Effects of heat on foodstufs; Priestley, R. J., Ed.; Applied Science Publ. Ltd: London, 1979.Search in Google Scholar
24. Budiman, J.; Nopianti, R.; Lestari, S. D. Karakteristik kemasan cerdas dari pati buah lindur (Bruguiera gymnorrizha). FishtecH 2018, 7 (1), 49–59. https://doi.org/10.36706/fishtech.v7i1.5980.Search in Google Scholar
25. Sulityo, H. W.; Ismiyati, I. Pengaruh formulasi pati singkong–selulosa terhadap sifat mekanik dan hidrofobisitas pada pembuatan kemasan cerdas. Jurnal Konversi 2012, 1 (2), 23–30. https://doi.org/10.24853/konversi.1.2.%25p.Search in Google Scholar
26. George, J.; Sabapathi, S. N. Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanoteknologi, Sains dan Aplikasi 2015, 8, 45–54. https://doi.org/10.2147/NSA.S64386.Search in Google Scholar PubMed PubMed Central
27. Louis, A. C. F.; Venkatachalam, S. Energy Efficient Process for Valorization of Corn Cob as a Source for Nanocrystalline Cellulose and Hemicellulose Production. Int. J. Biol. Macromol. 2020, 163, 260–269. https://doi.org/10.1016/j.ijbiomac.2020.06.276.Search in Google Scholar PubMed
28. Mehanny, S.; Abu-El Magd, E. E.; Ibrahim, M.; Farag, M.; Gil-San-Millan, R.; Navarro, J.; El-Kashif, E. Extraction and Characterization of Nanocellulose from Three Types of Palm Residues. J. Mater. Res. Technol. 2021, 10, 526–537. https://doi.org/10.1016/j.jmrt.2020.12.027.Search in Google Scholar
29. Wulandari, W. T.; Rochliadi, A.; Arcana, I. M. Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse. In IOP Conference Series: Materials Science and Engineering; IOP Publishing, Vol. 107, 2016; pp. 223–236; https://doi.org/10.1088/1757-899x/107/1/012045.Search in Google Scholar
30. Muslihudin, M.; Sari, I. N. Isolasi nanoselulosa dari limbah hasil pertanian dengan menggunakan variasi konsentrasi asam. Jurnal Penelitian Pertanian Terapan 2020, 20 (2), 142–147. https://doi.org/10.25181/jppt.v20i2.1631.Search in Google Scholar
31. Fagbemigun, T. K.; Fagbemi, O. D.; Otitoju, O.; Mgbachiuzor, E.; Igwe, C. C. Pulp and Paper-Making Potential of Corn Husk. Int. J. Agric. Sci. 2014, 4 (4), 209–213.10.9734/BJAST/2014/10745Search in Google Scholar
32. de Andrade, M. R.; Nery, T. B. R.; de Santana e Santana, T. I.; Leal, I. L.; Rodrigues, L. A. P.; de Oliveira Reis, J. H.; Machado, B. A. S. Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers 2019, 11 (4), 658. https://doi.org/10.3390/polym11040658.Search in Google Scholar PubMed PubMed Central
33. Nasution, H.; Harahap, H.; Afandy, Y.; Fath, M. The Effect of Cellulose Nanocrystal (CNC) from Rattan Biomass as Filler and Citric Acid as Co-Plasticizer on Tensile Properties of Sago Starch Biocomposite. AIP Conf. Proc. 2017, 1904 (1), 020043. https://doi.org/10.1063/1.5011900.Search in Google Scholar
34. Fitriani, F.; Bahri, S.; Nurhaeni, N. Produksi bioetanol tongkol jagung (Zea mays) dari hasil proses delignifikasi. J. Nat. Sci. Res. 2013, 2, 66–74. https://doi.org/10.22487/25411969.2013.v2.i3.1868.Search in Google Scholar
35. Xie, H.; Du, H.; Yang, X.; Si, C. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw. Int. J. Polym. Sci. 2018, 2018, 1–25. https://doi.org/10.1155/2018/7923068.Search in Google Scholar
36. Ningtyas, K. R.; Muslihudin, M.; Sari, I. N. Sintesis nanoselulosa dari limbah hasil pertanian dengan menggunakan variasi konsentrasi asam. Jurnal Penelitian Pertanian Terapan 2020, 20 (2), 142–147. https://doi.org/10.25181/jppt.v120i2.1631.Search in Google Scholar
37. Julianto, H.; Farid, M.; Rasyida, A. Ekstraksi nanoselulosa dengan metode hidrolisis asam sebagai penguat komposit absorpsi suara. Jurnal Teknik ITS 2017, 6 (2), F243–F246. https://doi.org/10.12962/j23373539.v6i2.24259.Search in Google Scholar
38. Fawcett, T. G.; Crowder, C. E.; Kabekkodu, S. N.; Needham, F.; Kaduk, J. A.; Blanton, T. N.; Shpanchenko, R. Reference Materials for the Study of Polymorphism and Crystallinity in Cellulosics. Powder Diffr. 2013, 28 (1), 18–31. https://doi.org/10.1017/S0885715612000930.Search in Google Scholar
39. Shanmugarajah, B.; Kiew, P. L.; Chew, I. M. L.; Choong, T. S. Y.; Tan, K. W. Isolation of Nanocrystalline Cellulose (NCC) from Palm Oil Empty Fruit Bunch (EFB): Preliminary Result on FTIR and DLS Analysis. Chem. Eng. Trans. 2015, 45, 1705–1710. https://doi.org/10.3303/CET1545285.Search in Google Scholar
40. Rehman, N.; de Miranda, M. I. G.; Rosa, S. M.; Pimentel, D. M.; Nachtigall, S. M.; Bica, C. I. Cellulose and Nanocellulose from Maize Straw: an Insight on the Crystal Properties. J. Polym. Environ. 2014, 22, 252–259. https://doi.org/10.1007/s10924-013-0624-9.Search in Google Scholar
41. de Carvalho Benini, K. C. C.; Voorwald, H. J. C.; Cioffi, M. O. H.; Rezende, M. C.; Arantes, V. Preparation of Nanocellulose from Imperata Brasiliensis Grass Using Taguchi Method. Carbohydr. Polym. 2018, 192, 337–346. https://doi.org/10.1016/j.carbpol.2018.03.055.Search in Google Scholar PubMed
42. Roy, S.; Rhim, J. W. Preparation of Carbohydrate-Based Functional Composite Films Incorporated with Curcumin. Food Hydrocoll. 2020, 98, 105302. https://doi.org/10.1016/j.foodhyd.2019.105302.Search in Google Scholar
43. Guilbert, S.; Biquet, B. Edible Films and Coatings. In Food Packaging Technology; Bureau, G.; Multon, J. L., Eds.; VCH Publishers: New York, 1990.Search in Google Scholar
44. Wu, C.; Sun, J.; Chen, M.; Ge, Y.; Ma, J.; Hu, Y.; Yan, Z. Effect of Oxidized Chitin Nanocrystals and Curcumin into Chitosan Films for Seafood Freshness Monitoring. Food Hydrocolloids 2019, 95, 308–317. https://doi.org/10.1016/j.foodhyd.2019.04.047.Search in Google Scholar
45. Zhang, J.; Huang, X.; Zou, X.; Shi, J.; Zhai, X.; Liu, L.; Xiao, J. A Visual Indicator Based on Curcumin with High Stability for Monitoring the Freshness of Freshwater Shrimp, Macrobrachium Rosenbergii. J. Food Eng. 2021, 292, 110290. https://doi.org/10.1016/j.jfoodeng.2020.110290.Search in Google Scholar
46. Cvek, M.; Paul, U. C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A.. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14 (12), 14654–14667. https://doi.org/10.1021/acsami.2c02181.Search in Google Scholar PubMed PubMed Central
47. Liu, D.; Dang, S.; Zhang, L.; Munsop, K.; Li, X. Corn Starch/Polyvinyl Alcohol Based Films Incorporated with Curcumin-Loaded Pickering Emulsion for Application in Intelligent Packaging. Int. J. Biol. Macromol. 2021, 188, 974–982. https://doi.org/10.1016/j.ijbiomac.2021.08.080.Search in Google Scholar PubMed
48. Roy, S.; Priyadarshi, R.; Ezati, P.; Rhim, J. W. Curcumin and its Uses in Active and Smart Food Packaging Applications-A Comprehensive Review. Food Chem. 2022, 375, 131885; https://doi.org/10.1016/j.foodchem.2021.131885.Search in Google Scholar PubMed
49. Alexandra, Y.; Nurlina Aplikasi edible coating dari pektin jeruk songhi pontianak (Citrus nobilis Var Microcarpa) pada penyimpanan buah tomat. Jurnal Kimia Khatulistiwa. 2014, 3 (4), 11–20.Search in Google Scholar
50. Herawati, D.; Purnamayati, L.; Kurniasih, R. A. Perubahan kualitas udang putih (Penaeus merguiensis) selama penyimpanan dingin dengan penambahan ekstrak daun jati (Tectona grandis). Jurnal Ilmu dan Teknologi Perikanan 2020, 2 (2), 1–6. https://doi.org/10.14710/jitpi.2020.9643.Search in Google Scholar
51. Bhadra, S.; Narvaez, C.; Thomson, D. J.; Bridges, G. E. Non-Destructive Detection of Fish Spoilage Using a Wireless Basic Volatile Sensor. Talanta 2015, 134, 718–723. https://doi.org/10.1016/j.talanta.2014.12.017.Search in Google Scholar PubMed
52. Gonçalves, A. A.; Junior, C. S. G. G. The effect of glaze uptake on storage quality of frozen shrimp. J. Food Eng. 2009, 90 (2), 285–290. https://doi.org/10.1016/j.jfoodeng.2008.06.038.Search in Google Scholar
53. Weliana, S.; Sari, E. R.; Wahyudi, J. Penggunaan CaCO3 untuk mempertahankan kualitas tekstur dan sifat organoleptik pisang ambon (Musa acuminata) selama penyimpanan. AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian 2014, 1 (1); https://doi.org/10.37676/agritepa.v1i1.110.Search in Google Scholar
54. Herliany, N. E.; Santoso, J.; Salamah, E. Effects of Carrageenan Coating on Organoleptic Quality of Boiled Shrimp During Refrigeration Storage. Jurnal Agroindustri 2013, 3 (2), 61–70; https://doi.org/10.31186/j.agroind.3.2.61-70.Search in Google Scholar
55. Hadiwiyoto Teknologi Hasil Perikanan. Jilid 1; Penerbit Liberty: Yogyakarta, 1993.Search in Google Scholar
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition