Home Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
Article
Licensed
Unlicensed Requires Authentication

Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator

  • Henny Purwaningsih ORCID logo EMAIL logo , Nor Pana Yupa , Tetty Kemala , Kustiariyah Kustiariyah and Diana Widiastuti
Published/Copyright: February 24, 2025

Abstract

Consumer demand for food safety and quality is driving innovation in eco-friendly and intelligent food packaging. This intelligent packaging can monitor product quality and reduce the risk of spoilage. One innovation uses natural indicators, such as curcumin, which is sensitive to changes in pH and can detect food spoilage. Research on intelligent packaging with curcumin indicators based on ganyong starch with nanocellulose from corn husk has never been done. Isolation of nanocellulose from corn husk produced a yield of 40.84 %. Morphological analysis showed irregular shape and size, with crystallinity of 57.77 % and an average particle size of 230.9 nm. Tests on vaname shrimp (Litopenaeus vannamei) showed that the ganyong-nanocellulose-curcumin film can monitor the freshness of shrimp through color changes from yellow to red under alkaline conditions, indicating spoilage. Ammonia during spoilage caused weight loss, soft texture, and increased TVBN value. Curcumin-based indicators affect intelligent packaging properties, reducing moisture content, water vapor transmission rate, solubility, and elongation while increasing tensile strength, density, and thickness. This intelligent packaging film has great potential for monitoring seafood freshness, making it a promising innovation.


Corresponding author: Henny Purwaningsih, Faculty of Mathematics and Sciences, Department of Chemistry, IPB University, Bogor, 16680, West of Java, Indonesia; and Integrated Laboratory, IPB University, Bogor, 16129, West of Java, Indonesia, e-mail:
Article note: A collection of invited papers based on presentations at the 9th International Conference for Young Chemists (ICYC 2024) held on 9–11 Oct 2024 in Penang, Malaysia.

Funding source: The Ministry of Education and Culture, Research and Technology of the Republic of Indonesia

Award Identifier / Grant number: Contract Number: 027/E5/PG.02.00.PL/2024 Date June

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The Ministry of Education and Culture, Research and Technology of the Republic of Indonesia for the research grant funding year 2024 with Contract Number: 027/E5/PG.02.00.PL/2024 Date June 11th, 2024 and 22040/IT3.D10/PT.01.02/P/B/2024 Date 12th June, 2024.

  7. Data availability: Not applicable.

References

1. Bumbudsanpharoke, N.; Ko, S. Nanomaterial-Based Optical Indicators: Promise, Opportunities, and Challenges in the Development of Colorimetric Systems for Intelligent Packaging. Nano Res. 2019, 12 (12), 489–500. https://doi.org/10.1007/s12274-018-2237-z.Search in Google Scholar

2. Pacquit, A.; Lau, K. T.; McLaughlin, H.; Frisby, J.; Quilty, B.; Diamond, D. Development of a Volatile Amine Sensor for the Monitoring of Fish Spoilage. Talanta 2006, 69 (2), 515–520. https://doi.org/10.1016/j.talanta.2005.10.046.Search in Google Scholar PubMed

3. Kuswandi, B. Toward Smarter Food Packaging. In Food Packaging: The Smarter Way; Springer Nature Singapore: Singapore, 2022; pp. 11–29.10.1007/978-981-16-7196-8_2Search in Google Scholar

4. Vedove, T. M.; Maniglia, B. C.; Tadini, C. C. Production of Sustainable Intelligent Packaging Based on Cassava Starch and Anthocyanin by an Extrusion Process. J. Food Eng. 2021, 289, 110274. https://doi.org/10.1016/j.jfoodeng.2020.110274.Search in Google Scholar

5. Marpaung, A. M. Potensi Pewarna Alami Lokal Untuk Industri Pangan. Food Rev. 2018, 13.Search in Google Scholar

6. Araujo, J. A.; Azeem, M.; Venkatesh, C.; Mojicevic, M.; Fournet, M. B.; Attallah, O. A. Color Stability Enhancement of Curcumin Bioplastic Films Using Natural Hybrid Fillers of Montmorillonite and Revalorized Cellulose. ACS Sustain. Chem. Eng. 2023, 11 (26), 9696–9710. https://doi.org/10.1021/acssuschemeng.3c01466.Search in Google Scholar

7. Aliabbasi, N.; Fathi, M.; Emam-Djomeh, Z. Curcumin: A Promising Bioactive Agent for Application in Food Packaging Systems. J. Environ. Chem. Eng. 2021, 9 (4), 105520. https://doi.org/10.1016/j.jece.2021.105520.Search in Google Scholar

8. Perumal, A. B.; Sellamuthu, P. S.; Nambiar, R. B.; Sadiku, E. R. Development of Polyvinyl Alcohol/Chitosan Bio-Nanocomposite Films Reinforced with Cellulose Nanocrystals Isolated from Rice Straw. Appl. Surf. Sci. 2018, 449 (449), 591–602. https://doi.org/10.1016/j.apsusc.2018.01.022.Search in Google Scholar

9. Chen, H. Z.; Zhang, M.; Bhandari, B.; Yang, C. H. Novel pH-Sensitive Films Containing Curcumin and Anthocyanins to Monitor Fish Freshness. Food Hydrocolloids 2020, 100, 105438. https://doi.org/10.1016/j.foodhyd.2019.105438.Search in Google Scholar

10. Sundari, R. Pemanfaatan dan efisiensi kurkumin kunyit (Curcuma domestica Val) sebagai indikator titrasi asam basa. Teknoin 2016, 22 (8). https://doi.org/10.20885/teknoin.vol22.iss8.art5.Search in Google Scholar

11. Wang, L.; Xue, J.; Zhang, Y.. Preparation and Characterization of Curcumin Loaded Caseinate/Zein Nanocomposite Film Using pH-Driven Method. Ind. Crops Prod. 2019, 130, 71–80. https://doi.org/10.1016/j.apsusc.2018.01.022.Search in Google Scholar

12. Duan, M.; Yu, S.; Sun, J.; Jiang, H.; Zhao, J.; Tong, C.; Wu, C. Development and Characterization of Electrospun Nanofibers Based on Pullulan/Chitin Nanofibers Containing Curcumin and Anthocyanins for Active-Intelligent Food Packaging. Int. J. Biol. Macromol. 2021, 187 (187), 332–340. https://doi.org/10.1016/j.ijbiomac.2021.07.140.Search in Google Scholar PubMed

13. Liu, J.; Wang, H.; Wang, P.; Guo, M.; Jiang, S.; Li, X.; Jiang, S. Films Based on κ- Carrageenan Incorporated with Curcumin for Freshness Monitoring. Food Hydrocolloids 2018, 83 (83), 134–142. https://doi.org/10.1016/j.foodhyd.2018.05.012.Search in Google Scholar

14. Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Intelligent Edible Films Based on Gelatin and Curcumin. Food Hydrocolloids 2017, 66, 8–15. https://doi.org/10.1016/j.foodhyd.2016.11.007.Search in Google Scholar

15. Bojorges, H.; Ríos‐Corripio, M. A.; Hernández‐Cázares, A. S.; Hidalgo‐Contreras, J. V.; Contreras‐Oliva, A. Effect of the Application of an Edible Film with Turmeric (Curcuma Longa L.) on the Oxidative Stability of Meat. Food Sci. Nutr. 2020, 8 (8), 4308–4319. https://doi.org/10.1002/fsn3.1728.Search in Google Scholar PubMed PubMed Central

16. Wu, C.; Sun, J.; Chen, M.; Ge, Y.; Ma, J.; Hu, Y.; Yan, Z. Effect of Oxidized Chitin Nanocrystals and Curcumin into Chitosan Films for Seafood Freshness Monitoring. Food Hydrocolloids 2019, 95, 308–317; https://doi.org/10.1016/j.foodhyd.2019.04.047.Search in Google Scholar

17. Almeida, C. M.; Magalhães, J. M.; Souza, H. K.; Gonçalves, M. P. The Role of Choline Chloride-Based Deep Eutectic Solvent and Curcumin on Chitosan Films Properties. Food Hydrocoll. 2018, 81, 456–466. https://doi.org/10.1016/j.foodhyd.2018.03.025.Search in Google Scholar

18. Bajpai, S. K.; Chand, N.; Ahuja, S. Investigation of Curcumin Release from Chitosan/Cellulose Microcrystals (CMC) Antimicrobial Films. Int. J. Biol. Macromol. 2015, 79, 440–448. https://doi.org/10.1016/j.ijbiomac.2015.05.012.Search in Google Scholar PubMed

19. Petchana, N.; Phoopiam, N.; Thiraphattaraphun, L. Natural pH Indicator from Tapioca Starch/Curcumin Film. AIP Conf. Proc. 2020, 2279 (1). https://doi.org/10.1063/5.0023184.Search in Google Scholar

20. Baysal, G.; Doğan, F. Investigation and Preparation of Biodegradable Starch-Based Nanofilms for Potential Use of Curcumin and Garlic in Food Packaging Applications. J. Biomater. Sci., Polym. Ed. 2020, 31 (9), 1127–1143. https://doi.org/10.1080/09205063.2020.1743947.Search in Google Scholar PubMed

21. Baek, S. K.; Song, K. B. Characterization of Active Biodegradable Films Based on Proso Millet Starch and Curcumin. Starch‐Stärke 2019, 71, 3–4. 1800174 https://doi.org/10.1002/star.201800174.Search in Google Scholar

22. Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical Properties of Flours and Starches Derived from Traditional Indonesian Tubers and Roots. J. Food Sci. Technol. 2014, 51 (12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5.Search in Google Scholar PubMed PubMed Central

23. Greenwood, C. T.; Munro, D. N. Carbohydrates. In Effects of heat on foodstufs; Priestley, R. J., Ed.; Applied Science Publ. Ltd: London, 1979.Search in Google Scholar

24. Budiman, J.; Nopianti, R.; Lestari, S. D. Karakteristik kemasan cerdas dari pati buah lindur (Bruguiera gymnorrizha). FishtecH 2018, 7 (1), 49–59. https://doi.org/10.36706/fishtech.v7i1.5980.Search in Google Scholar

25. Sulityo, H. W.; Ismiyati, I. Pengaruh formulasi pati singkong–selulosa terhadap sifat mekanik dan hidrofobisitas pada pembuatan kemasan cerdas. Jurnal Konversi 2012, 1 (2), 23–30. https://doi.org/10.24853/konversi.1.2.%25p.Search in Google Scholar

26. George, J.; Sabapathi, S. N. Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanoteknologi, Sains dan Aplikasi 2015, 8, 45–54. https://doi.org/10.2147/NSA.S64386.Search in Google Scholar PubMed PubMed Central

27. Louis, A. C. F.; Venkatachalam, S. Energy Efficient Process for Valorization of Corn Cob as a Source for Nanocrystalline Cellulose and Hemicellulose Production. Int. J. Biol. Macromol. 2020, 163, 260–269. https://doi.org/10.1016/j.ijbiomac.2020.06.276.Search in Google Scholar PubMed

28. Mehanny, S.; Abu-El Magd, E. E.; Ibrahim, M.; Farag, M.; Gil-San-Millan, R.; Navarro, J.; El-Kashif, E. Extraction and Characterization of Nanocellulose from Three Types of Palm Residues. J. Mater. Res. Technol. 2021, 10, 526–537. https://doi.org/10.1016/j.jmrt.2020.12.027.Search in Google Scholar

29. Wulandari, W. T.; Rochliadi, A.; Arcana, I. M. Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse. In IOP Conference Series: Materials Science and Engineering; IOP Publishing, Vol. 107, 2016; pp. 223–236; https://doi.org/10.1088/1757-899x/107/1/012045.Search in Google Scholar

30. Muslihudin, M.; Sari, I. N. Isolasi nanoselulosa dari limbah hasil pertanian dengan menggunakan variasi konsentrasi asam. Jurnal Penelitian Pertanian Terapan 2020, 20 (2), 142–147. https://doi.org/10.25181/jppt.v20i2.1631.Search in Google Scholar

31. Fagbemigun, T. K.; Fagbemi, O. D.; Otitoju, O.; Mgbachiuzor, E.; Igwe, C. C. Pulp and Paper-Making Potential of Corn Husk. Int. J. Agric. Sci. 2014, 4 (4), 209–213.10.9734/BJAST/2014/10745Search in Google Scholar

32. de Andrade, M. R.; Nery, T. B. R.; de Santana e Santana, T. I.; Leal, I. L.; Rodrigues, L. A. P.; de Oliveira Reis, J. H.; Machado, B. A. S. Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers 2019, 11 (4), 658. https://doi.org/10.3390/polym11040658.Search in Google Scholar PubMed PubMed Central

33. Nasution, H.; Harahap, H.; Afandy, Y.; Fath, M. The Effect of Cellulose Nanocrystal (CNC) from Rattan Biomass as Filler and Citric Acid as Co-Plasticizer on Tensile Properties of Sago Starch Biocomposite. AIP Conf. Proc. 2017, 1904 (1), 020043. https://doi.org/10.1063/1.5011900.Search in Google Scholar

34. Fitriani, F.; Bahri, S.; Nurhaeni, N. Produksi bioetanol tongkol jagung (Zea mays) dari hasil proses delignifikasi. J. Nat. Sci. Res. 2013, 2, 66–74. https://doi.org/10.22487/25411969.2013.v2.i3.1868.Search in Google Scholar

35. Xie, H.; Du, H.; Yang, X.; Si, C. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw. Int. J. Polym. Sci. 2018, 2018, 1–25. https://doi.org/10.1155/2018/7923068.Search in Google Scholar

36. Ningtyas, K. R.; Muslihudin, M.; Sari, I. N. Sintesis nanoselulosa dari limbah hasil pertanian dengan menggunakan variasi konsentrasi asam. Jurnal Penelitian Pertanian Terapan 2020, 20 (2), 142–147. https://doi.org/10.25181/jppt.v120i2.1631.Search in Google Scholar

37. Julianto, H.; Farid, M.; Rasyida, A. Ekstraksi nanoselulosa dengan metode hidrolisis asam sebagai penguat komposit absorpsi suara. Jurnal Teknik ITS 2017, 6 (2), F243–F246. https://doi.org/10.12962/j23373539.v6i2.24259.Search in Google Scholar

38. Fawcett, T. G.; Crowder, C. E.; Kabekkodu, S. N.; Needham, F.; Kaduk, J. A.; Blanton, T. N.; Shpanchenko, R. Reference Materials for the Study of Polymorphism and Crystallinity in Cellulosics. Powder Diffr. 2013, 28 (1), 18–31. https://doi.org/10.1017/S0885715612000930.Search in Google Scholar

39. Shanmugarajah, B.; Kiew, P. L.; Chew, I. M. L.; Choong, T. S. Y.; Tan, K. W. Isolation of Nanocrystalline Cellulose (NCC) from Palm Oil Empty Fruit Bunch (EFB): Preliminary Result on FTIR and DLS Analysis. Chem. Eng. Trans. 2015, 45, 1705–1710. https://doi.org/10.3303/CET1545285.Search in Google Scholar

40. Rehman, N.; de Miranda, M. I. G.; Rosa, S. M.; Pimentel, D. M.; Nachtigall, S. M.; Bica, C. I. Cellulose and Nanocellulose from Maize Straw: an Insight on the Crystal Properties. J. Polym. Environ. 2014, 22, 252–259. https://doi.org/10.1007/s10924-013-0624-9.Search in Google Scholar

41. de Carvalho Benini, K. C. C.; Voorwald, H. J. C.; Cioffi, M. O. H.; Rezende, M. C.; Arantes, V. Preparation of Nanocellulose from Imperata Brasiliensis Grass Using Taguchi Method. Carbohydr. Polym. 2018, 192, 337–346. https://doi.org/10.1016/j.carbpol.2018.03.055.Search in Google Scholar PubMed

42. Roy, S.; Rhim, J. W. Preparation of Carbohydrate-Based Functional Composite Films Incorporated with Curcumin. Food Hydrocoll. 2020, 98, 105302. https://doi.org/10.1016/j.foodhyd.2019.105302.Search in Google Scholar

43. Guilbert, S.; Biquet, B. Edible Films and Coatings. In Food Packaging Technology; Bureau, G.; Multon, J. L., Eds.; VCH Publishers: New York, 1990.Search in Google Scholar

44. Wu, C.; Sun, J.; Chen, M.; Ge, Y.; Ma, J.; Hu, Y.; Yan, Z. Effect of Oxidized Chitin Nanocrystals and Curcumin into Chitosan Films for Seafood Freshness Monitoring. Food Hydrocolloids 2019, 95, 308–317. https://doi.org/10.1016/j.foodhyd.2019.04.047.Search in Google Scholar

45. Zhang, J.; Huang, X.; Zou, X.; Shi, J.; Zhai, X.; Liu, L.; Xiao, J. A Visual Indicator Based on Curcumin with High Stability for Monitoring the Freshness of Freshwater Shrimp, Macrobrachium Rosenbergii. J. Food Eng. 2021, 292, 110290. https://doi.org/10.1016/j.jfoodeng.2020.110290.Search in Google Scholar

46. Cvek, M.; Paul, U. C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A.. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14 (12), 14654–14667. https://doi.org/10.1021/acsami.2c02181.Search in Google Scholar PubMed PubMed Central

47. Liu, D.; Dang, S.; Zhang, L.; Munsop, K.; Li, X. Corn Starch/Polyvinyl Alcohol Based Films Incorporated with Curcumin-Loaded Pickering Emulsion for Application in Intelligent Packaging. Int. J. Biol. Macromol. 2021, 188, 974–982. https://doi.org/10.1016/j.ijbiomac.2021.08.080.Search in Google Scholar PubMed

48. Roy, S.; Priyadarshi, R.; Ezati, P.; Rhim, J. W. Curcumin and its Uses in Active and Smart Food Packaging Applications-A Comprehensive Review. Food Chem. 2022, 375, 131885; https://doi.org/10.1016/j.foodchem.2021.131885.Search in Google Scholar PubMed

49. Alexandra, Y.; Nurlina Aplikasi edible coating dari pektin jeruk songhi pontianak (Citrus nobilis Var Microcarpa) pada penyimpanan buah tomat. Jurnal Kimia Khatulistiwa. 2014, 3 (4), 11–20.Search in Google Scholar

50. Herawati, D.; Purnamayati, L.; Kurniasih, R. A. Perubahan kualitas udang putih (Penaeus merguiensis) selama penyimpanan dingin dengan penambahan ekstrak daun jati (Tectona grandis). Jurnal Ilmu dan Teknologi Perikanan 2020, 2 (2), 1–6. https://doi.org/10.14710/jitpi.2020.9643.Search in Google Scholar

51. Bhadra, S.; Narvaez, C.; Thomson, D. J.; Bridges, G. E. Non-Destructive Detection of Fish Spoilage Using a Wireless Basic Volatile Sensor. Talanta 2015, 134, 718–723. https://doi.org/10.1016/j.talanta.2014.12.017.Search in Google Scholar PubMed

52. Gonçalves, A. A.; Junior, C. S. G. G. The effect of glaze uptake on storage quality of frozen shrimp. J. Food Eng. 2009, 90 (2), 285–290. https://doi.org/10.1016/j.jfoodeng.2008.06.038.Search in Google Scholar

53. Weliana, S.; Sari, E. R.; Wahyudi, J. Penggunaan CaCO3 untuk mempertahankan kualitas tekstur dan sifat organoleptik pisang ambon (Musa acuminata) selama penyimpanan. AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian 2014, 1 (1); https://doi.org/10.37676/agritepa.v1i1.110.Search in Google Scholar

54. Herliany, N. E.; Santoso, J.; Salamah, E. Effects of Carrageenan Coating on Organoleptic Quality of Boiled Shrimp During Refrigeration Storage. Jurnal Agroindustri 2013, 3 (2), 61–70; https://doi.org/10.31186/j.agroind.3.2.61-70.Search in Google Scholar

55. Hadiwiyoto Teknologi Hasil Perikanan. Jilid 1; Penerbit Liberty: Yogyakarta, 1993.Search in Google Scholar

Published Online: 2025-02-24
Published in Print: 2025-06-26

© 2025 IUPAC & De Gruyter

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0380/html
Scroll to top button