Home Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
Article
Licensed
Unlicensed Requires Authentication

Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2

  • Jia Wang , Yixuan Duan , Mingjie Huang , Xiaohui Wu and Tao Zhou ORCID logo EMAIL logo
Published/Copyright: March 5, 2025

Abstract

In this study, carbon and nitrogen co-doped TiO2 nanocomposites (C–N–TiO2) were successfully synthesized by the hydrothermal and low temperature calcination method with ultrasound (US) assistance for photocatalytic degradation of diclofenac (DCF). It was found that the introduction of US at two particular synthesis steps would obviously improve the photocatalytic properties of C–N–TiO2. Characterizations indicated the enhancement was owing to the integrative effects of the holonomic crystal structure and special morphology properties. Under LED visible light irradiation of 450 nm wavelength, C–N–TiO2 could achieve excellent degradation rate of 97 % at 3 h with dosage of 0.4 g L−1. The role of full-process sonication to affect the properties of C–N–TiO2 was also revealed. The result of this study is expected to provide a feasible and easy way to improve the ability of semiconductor catalysts for water purification.


Corresponding author: Tao Zhou, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China, e-mail:
Jia Wang and Yixuan Duan contribute to the paper equally. Article note: A collection of invited papers based on presentations at the 9th International Conference for Young Chemists (ICYC 2024) held on 9–11 Oct 2024 in Penang, Malaysia.

Award Identifier / Grant number: 2023YFC3207204

Acknowledgments

The Huazhong University of Science & Technology Analytic and Testing Centre is thanked for the advanced analytic operations.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This study is financially supported by the National Key Technical Research and Development Program of China (2023YFC3207204), the National Natural Science Foundation of China (No. 22376072 and 21677055), the Leading Plan for Scientific and Technological Innovation of High-tech Industries of Hunan Province (2021GK4060), the Key Research & Development Program of Hubei Province (No. 2023BCB103), and the Public Service Platform of Environmental Research Facilities within the School of Environmental Science and Engineering at Huazhong University of Science and Technology (HUST).

  7. Data availability: Not applicable.

References

1. Zhou, T.; Feng, K.; Xiang, W.; Lv, Y.; Wu, X.; Mao, J. Rapid Decomposition of Diclofenac in a Magnetic Field Enhanced Zero-Valent Iron/EDTA Fenton-like System. Chemosphere 2018, 193, 968–977; https://doi.org/10.1016/j.chemosphere.2017.11.090.Search in Google Scholar PubMed

2. Thiruppathi, M.; Kumar, P. S.; Devendran, P.; Ramalingan, C.; Swaminathan, M.; Nagarajan, E. R. Ce@TiO2 Nanocomposites: An Efficient, Stable and Affordable Photocatalyst for the Photodegradation of Diclofenac Sodium. J. Alloys Compd. 2017, 735, 728–734.10.1016/j.jallcom.2017.11.139Search in Google Scholar

3. Xiang, W.; Zou, X.; Huang, M.; Wu, X.; Zhou, T. Efficient Decontamination of RO Concentrate in a Sonochemical Zero-Valent Iron/persulfate Fenton-like System: The Molecule-Size Preferred Degradation of Dissolved Organic Matters. J. Environ. Chem. Eng. 2022, 10 (3), 107547; https://doi.org/10.1016/j.jece.2022.107547.Search in Google Scholar

4. Salaeh, S.; Perisic, D. J.; Biosic, M.; Kusic, H.; Babic, S.; Lavrencic Stangar, U.; Dionysiou, D. D.; Loncaric Bozic, A. Diclofenac Removal by Simulated Solar Assisted Photocatalysis Using TiO2-Based Zeolite Catalyst; Mechanisms, Pathways and Environmental Aspects. Chem. Eng. J. 2016, 304, 289–302; https://doi.org/10.1016/j.cej.2016.06.083.Search in Google Scholar

5. Kanakaraju, D.; Motti, C. A.; Glass, B. D.; Oelgemöller, M. Photolysis and TiO2-Catalysed Degradation of Diclofenac in Surface and Drinking Water Using Circulating Batch Photoreactors. Environ. Chem. 2014, 11 (1), 51–62; https://doi.org/10.1071/en13098.Search in Google Scholar

6. Xiang, W.; Huang, M.; Wu, X.; Zhang, F.; Li, D.; Zhou, T. Amplification Effects of Magnetic Field on Hydroxylamine-Promoted ZVI/H2O2 Near-Neutral Fenton like System. Chin. Chem. Lett. 2022, 33 (3), 1275–1278; https://doi.org/10.1016/j.cclet.2021.07.072.Search in Google Scholar

7. Zhou, H.; Zhang, Q.; Zhang, Q.; Lixin Ma; Baohua Tu; Han Li; Yanfen Zhou Removal of Clofibric Acid and Diclofenac during Anaerobic Digestion of Sewage Sludge. Environ. Protect. Eng. 2013, 39 (4), 63–77; https://doi.org/10.37190/epe130406.Search in Google Scholar

8. Li, Y.; Huang, M.; Oh, W.; Wu, X.; Zhou, T. Efficient Activation of Sulfite for Reductive-Oxidative Degradation of Chloramphenicol by Carbon-Supported Cobalt Ferrite Catalysts. Chin. Chem. Lett. 2023, 34 (10), 108247; https://doi.org/10.1016/j.cclet.2023.108247.Search in Google Scholar

9. Rizzo, L.; Meric, S.; Kassinos, D.; Guida, M.; Russo, F.; Belgiorno, V. Degradation of Diclofenac by TiO2 Photocatalysis: UV Absorbance Kinetics and Process Evaluation through a Set of Toxicity Bioassays. Water Res. 2009, 43 (4), 979–988; https://doi.org/10.1016/j.watres.2008.11.040.Search in Google Scholar PubMed

10. Wang, K.; Guan, Z.; He, Y.; Fan, M. Harnessing Zinc Stannate for Sustainable Energy and Environment Solutions: Advances in Photocatalytic, Piezocatalytic, and Piezo-Photocatalytic Technologies. Nano Energy 2025, 133, 110518; https://doi.org/10.1016/j.nanoen.2024.110518.Search in Google Scholar

11. Wang, K.; He, Y. Recent Advances in Metal Titanate-Based Piezocatalysts: Enhancing Catalytic Performance through Improved Piezoelectric Properties and Regulated Carrier Transport. Chin. J. Catal. 2024, 61, 111–134; https://doi.org/10.1016/s1872-2067(23)64635-2.Search in Google Scholar

12. Chu, Y.; Zhao, C.; Zheng, Y.; Ren, X.; Yuan, S.; Zhao, L.; Wu, Y.; He, Y. ZnSnO3-derived ZnSnO3/ZIF-8 Composites with Enhanced Adsorption and Photocatalytic Activity in RhB Degradation and CO2 Reduction. J. Environ. Sci. 2025, 154, 444–456; https://doi.org/10.1016/j.jes.2024.08.033.Search in Google Scholar PubMed

13. Ren, X.; Chu, Y.; Yuan, S.; Zheng, Y.; Zeng, Z.; Xia, C.; Zhao, L.; Wu, Y.; He, Y. Enhanced Piezocatalytic RhB Degradation with ZnSnO3 Nanocube-Modified Bi4Ti3O12 Composite Catalyst by Harnessing Ultrasonic Energy. J. Environ. Manage. 2024, 370, 122776; https://doi.org/10.1016/j.jenvman.2024.122776.Search in Google Scholar PubMed

14. Credico, B. D.; Bellobono, I. R.; D’Arienzo, M.; Fumagalli, D.; Redaelli, M.; Scotti, R.; Morazzoni, F. Efficacy of the Reactive Oxygen Species Generated by Immobilized TiO2 in the Photocatalytic Degradation of Diclofenac. Int. J. Photoenergy 2015, 2015, 1–13; https://doi.org/10.1155/2015/919217.Search in Google Scholar

15. Martínez, C. M. C. L.; Fernández, M. I.; Fernández, M.; Santaballa, J.; Faria, J. Aqueous Degradation of Diclofenac by Heterogeneous Photocatalysis Using Nanostructured Materials. Appl. Catal. B Environ. 2011, 107 (1–2), 110–118; https://doi.org/10.1016/j.apcatb.2011.07.003.Search in Google Scholar

16. Espino-Estévez, M. R.; Fernández-Rodríguez, C.; González-Díaz, O. M.; Araña, J.; Espinós, J.; Ortega-Méndez, J.; Doña-Rodríguez, J. M. Effect of TiO2-Pd and TiO2-Ag on the Photocatalytic Oxidation of Diclofenac, Isoproturon and Phenol. Chem. Eng. J. 2016, 298, 82–95; https://doi.org/10.1016/j.cej.2016.04.016.Search in Google Scholar

17. Cui, Y.; Ma, Q.; Deng, X.; Meng, Q.; Cheng, X.; Xie, M.; Li, X.; Cheng, Q.; Liu, H. Fabrication of Ag-Ag2O/reduced TiO2, Nanophotocatalyst and its Enhanced Visible Light Driven Photocatalytic Performance for Degradation of Diclofenac Solution. Appl. Catal. B Environ. 2017, 206, 136–145; https://doi.org/10.1016/j.apcatb.2017.01.014.Search in Google Scholar

18. Zhao, D.; Huang, X.; Tian, B.; Zhou, S.; Li, Y.; Du, Z. The Effect of Electronegative Difference on the Electronic Structure and Visible Light Photocatalytic Activity of N-Doped Anatase TiO2 by First-Principles Calculations. Appl. Phys. Lett. 2011, 98 (16), 269; https://doi.org/10.1063/1.3579199.Search in Google Scholar

19. Powell, M. J.; Palgrave, R. G.; Dunnill, C. W.; Parkin, I. P. A Fast and Effective Method for N-Doping TiO2 by Post Treatment with Liquid Ammonia: Visible Light Photocatalysis. Thin Solid Films 2014, 562 (26), 223–228; https://doi.org/10.1016/j.tsf.2014.04.067.Search in Google Scholar

20. Garlisi, C.; Szlachetko, J.; Aubry, C.; Fernandes, D. L.; Hattori, Y.; Paun, C.; Pavliuk, M. V.; Rajput, N. S.; Lewin, E.; Sá, J.; Palmisano, G. N-TiO2/Cu-TiO2 Double-Layer Films: Impact of Stacking Order on Photocatalytic Properties. J. Catal. 2017, 353, 116–122; https://doi.org/10.1016/j.jcat.2017.06.028.Search in Google Scholar

21. Guo, Q.; Zhang, Z.; Ma, X.; Jing, K.; Shen, M.; Yu, N.; Tang, J.; Dionysiou, D. D. Preparation of N,F-codoped TiO2 Nanoparticles by Three Different Methods and Comparison of Visible-Light Photocatalytic Performances. Separ. Purif. Technol. 2017, 175, 305–313; https://doi.org/10.1016/j.seppur.2016.11.041.Search in Google Scholar

22. El-Sheikh, S. M.; Khedr, T. M.; Hakki, A.; Ismail, A. A.; Badawy, W. A.; Bahnemann, D. W. Visible Light Activated Carbon and Nitrogen Co-doped Mesoporous TiO2 as Efficient Photocatalyst for Degradation of Ibuprofen. Separ. Purif. Technol. 2017, 173, 258–268; https://doi.org/10.1016/j.seppur.2016.09.034.Search in Google Scholar

23. Niu, Y.; Xing, M.; Zhang, J.; Tian, B. Visible Light Activated Sulfur and Iron Co-doped TiO2 Photocatalyst for the Photocatalytic Degradation of Phenol. Catal. Today 2013, 201 (201), 159–166; https://doi.org/10.1016/j.cattod.2012.04.035.Search in Google Scholar

24. Wang, X.; Lim, T. T. Solvothermal Synthesis of C-N Codoped TiO2 and Photocatalytic Evaluation for Bisphenol A Degradation Using a Visible-Light Irradiated LED Photoreactor. Appl. Catal. B Environ. 2010, 100 (1), 355–364; https://doi.org/10.1016/j.apcatb.2010.08.012.Search in Google Scholar

25. Wang, X.; Lim, T. T. Effect of Hexamethylenetetramine on the Visible-Light Photocatalytic Activity of C-N Codoped TiO2 for Bisphenol A Degradation: Evaluation of Photocatalytic Mechanism and Solution Toxicity. Appl. Catal. A Gen. 2011, 399 (1), 233–241; https://doi.org/10.1016/j.apcata.2011.04.002.Search in Google Scholar

26. Buda, W.; Czech, B. Preparation and Characterization of C,N-codoped TiO2 Photocatalyst for the Degradation of Diclofenac from Wastewater. Water Sci. Technol. 2013, 68 (6), 1322–1328; https://doi.org/10.2166/wst.2013.369.Search in Google Scholar PubMed

27. Triantis, T. M.; Fotiou, T.; Kaloudis, T.; Kontos, A.; Falaras, P.; Dionysiou, D.; Pelaez, M.; Hiskia, A. Photocatalytic Degradation and Mineralization of Microcystin-LR under UV-A, Solar and Visible Light Using Nanostructured Nitrogen Doped TiO2. J. Hazard. Mater. 2012, 211–212 (2), 196–202; https://doi.org/10.1016/j.jhazmat.2011.11.042.Search in Google Scholar PubMed

28. Pelaez, M. Development of Novel Visible and Solar Light-Activated Nanostructured Nitrogen-Fluorine Titanium Dioxide Photocatalyst for the Removal of Cyanotoxins in Water. PhD thesis, University of Cincinnati, USA, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337958461.Search in Google Scholar

29. Liu, G.; Han, C.; Pelaez, M.; Zhu, D.; Liao, S.; Likodimos, V.; Ioannidis, N.; Kontos, A. G.; Falaras, P.; Dunlop, P. S. M.; Byrne, J. A.; Dionysiou, D. D. Synthesis, Characterization and Photocatalytic Evaluation of Visible Light Activated C-Doped TiO2 Nanoparticles. Nanotechnology 2012, 23 (29), 294003; https://doi.org/10.1088/0957-4484/23/29/294003.Search in Google Scholar PubMed

30. Yu, C.; Yu, J. C.; Chan, M. Sonochemical Fabrication of Fluorinated Mesoporous Titanium Dioxide Microspheres. J. Solid State Chem. 2009, 182 (5), 1061–1069; https://doi.org/10.1016/j.jssc.2009.01.033.Search in Google Scholar

31. Yu, C.; Fan, Q.; Xie, Y.; Chen, J.; shu, Q.; Yu, J. C. Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol. J. Hazard. Mater. 2012, 237–238 (6), 38; https://doi.org/10.1016/j.jhazmat.2012.07.072.Search in Google Scholar PubMed

32. Zhou, W.; Changlin, Y. U.; Fan, Q.; Wei, L.; Chen, J.; Yu, J. C. Ultrasonic Fabrication of N-Doped TiO2 Nanocrystals with Mesoporous Structure and Enhanced Visible Light Photocatalytic Activity. Chin. J. Catal. 2013, 34 (6), 1250–1255; https://doi.org/10.1016/s1872-2067(12)60578-6.Search in Google Scholar

33. Kim, T. H.; Rodríguez-González, V.; Gyawali, G.; Cho, S. H.; Sekino, T.; Lee, S. W. Synthesis of Solar Light Responsive Fe, N Co-doped TiO2 Photocatalyst by Sonochemical Method. Catal. Today 2013, 212 (212), 75–80; https://doi.org/10.1016/j.cattod.2012.09.014.Search in Google Scholar

34. Khan, M. A.; Yang, J.; Kang, Y. M. Facile Synthesis of Low Cost Anatase Titania Nanotubes and its Electrochemical Performance. Electrochim. Acta 2015, 182, 629–638; https://doi.org/10.1016/j.electacta.2015.09.149.Search in Google Scholar

35. Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J.; Zhou, Q.; Lu, Z.; Gao, D.; Jin, L. Surface Modification of Polyester Fabric with Plasma Pretreatment and Carbon Nanotube Coating for Antistatic Property Improvement. Appl. Surf. Sci. 2015, 359, 196–203; https://doi.org/10.1016/j.apsusc.2015.10.060.Search in Google Scholar

36. Samuelsson, M.; Sarakinos, K.; Högberg, H.; Lewin, E.; Jansson, U.; Wälivaara, B.; Ljungcrantz, H.; Helmersson, U. Growth of Ti-C Nanocomposite Films by Reactive High Power Impulse Magnetron Sputtering under Industrial Conditions. Surf. Coat. Technol. 2012, 206 (8), 2396–2402; https://doi.org/10.1016/j.surfcoat.2011.10.039.Search in Google Scholar

37. Vijayan, B. K.; Dimitrijevic, N. M.; Finkelsteinshapiro, D.; Wu, J.; Gray, K. A. Coupling Titania Nanotubes and Carbon Nanotubes to Create Photocatalytic Nanocomposites. ACS Catal. 2012, 2 (2), 223–229; https://doi.org/10.1021/cs200541a.Search in Google Scholar

38. Ramandi, S.; Entezari, M. H.; Ghows, N. Sono-synthesis of Solar Light Responsive S-N-C-Tri Doped TiO2 Photo-Catalyst under Optimized Conditions for Degradation and Mineralization of Diclofenac. Ultrason. Sonochem. 2017, 38, 234–245; https://doi.org/10.1016/j.ultsonch.2017.03.008.Search in Google Scholar PubMed

39. Dai, G.; Liu, S.; Liang, Y.; Liu, H.; Zhong, Z. A Simple Preparation of Carbon and Nitrogen Co-doped Nanoscaled TiO2 with Exposed {001} Facets for Enhanced Visible-Light Photocatalytic Activity. J. Mol. Catal. A Chem. 2013, 368–369, 38–42; https://doi.org/10.1016/j.molcata.2012.11.014.Search in Google Scholar

40. Li, D.; Chen, F.; Jiang, D.; Shi, W.; Zheng, W. Enhanced Photocatalytic Activity of N-Doped TiO2 Nanocrystals with Exposed {001} Facets. Appl. Surf. Sci. 2016, 390, 689–695; https://doi.org/10.1016/j.apsusc.2016.07.149.Search in Google Scholar

41. Li, Z. G.; Miyake, S. Characteristics of N-Doped TiO2 Thin Films Grown on Unheated Glass Substrate by Inductively Coupled Plasma Assisted Dc Reactive Magnetron Sputtering. Appl. Surf. Sci. 2009, 255 (22), 9149–9153; https://doi.org/10.1016/j.apsusc.2009.06.126.Search in Google Scholar

42. Wang, J.; Fan, C.; Ren, Z.; Fu, X.; Qian, G.; Wang, Z. N-Doped TiO2/C Nanocomposites and N-Doped TiO2 Synthesised at Different Thermal Treatment Temperatures with the Same Hydrothermal Precursor. Dalton Trans. 2014, 43 (36), 13783–13791; https://doi.org/10.1039/c4dt00924j.Search in Google Scholar PubMed

43. Cesconeto, F. R.; Borlaf, M.; Nieto, M. I.; de Oliveira, A. P. N.; Moreno, R. Synthesis of CaTiO3 and CaTiO3/TiO2 Nanoparticulate Compounds through Ca2+/TiO2 Colloidal Sols: Structural and Photocatalytic Characterization. Ceram. Int. 2018, 44 (1), 301–309; https://doi.org/10.1016/j.ceramint.2017.09.173.Search in Google Scholar

44. Li, Z.; Xiaobo; Wang, T.; Wang, P. N.; Chen, J. Y.; Mi, L. Comparison of the Killing Effects between Nitrogen-Doped and Pure TiO2 on HeLa Cells with Visible Light Irradiation. Nanoscale Res. Lett. 2013, 8 (1), 96; https://doi.org/10.1186/1556-276x-8-96.Search in Google Scholar

45. Trevisan, V.; Olivo, A.; Pinna, F.; Signoretto, M.; Vindigni, F.; Cerrato, G.; Bianchi, C. C-N/TiO2 Photocatalysts: Effect of Co-doping on the Catalytic Performance under Visible Light. Appl. Catal. B Environ. 2014, 160–161 (1), 152–160; https://doi.org/10.1016/j.apcatb.2014.05.015.Search in Google Scholar

46. Olivo, A.; Ghedini, E.; Pascalicchio, P.; Manzoli, M.; Cruciani, G.; Signoretto, M. Sustainable Carbon Dioxide Photoreduction by a Cooperative Effect of Reactor Design and Titania Metal Promotion. Catalysts 2018, 8 (2), 41; https://doi.org/10.3390/catal8010041.Search in Google Scholar

47. Liu, J.; Zhang, L.; Yao, X.; Chuang, S. S. C. Photo-generated Conduction-Band and Shallow-Trap Electrons from UV Irradiation on Ethanol-Adsorbed TiO2 and N–TiO2: An In Situ Infrared Study. Res. Chem. Intermed. 2017, 43 (9), 5041–5054; https://doi.org/10.1007/s11164-017-3038-9.Search in Google Scholar

48. Khore, S. K.; Tellabati, N. V.; Apte, S. K.; Naik, S. D.; Ojha, P.; Kale, B. B.; Sonawane, R. S. Green Sol-Gel Route for Selective Growth of 1D Rutile N–TiO2: A Highly Active Photocatalyst for H2 Generation and Environmental Remediation under Natural Sunlight. RSC Adv. 2017, 7 (52), 33029–33042; https://doi.org/10.1039/c7ra01648d.Search in Google Scholar

49. Chen, C.; Fang, Q.; Cao, S.; Yan, Y. Photocatalytic Property and Photocatalytic Mechanism of TiO2/Fe2O3 Hybrids for Degradation of Organic Dyes. Surf. Rev. Lett. 2019, 5 (26), 1–13.10.1142/S0218625X18501962Search in Google Scholar

50. Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. ChemInform Abstract: Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: A Comparative Overview. Cheminform 2014, 4 (70), 37003–37026; https://doi.org/10.1002/chin.201448247.Search in Google Scholar

51. Li, R.; Liu, J.; Jia, Y.; Zhen, Q. Photocatalytic Degradation Mechanism of Oxytetracyclines Using Fe2O3-TiO2 Nanopowders. J. Nanosci. Nanotechnol. 2017, 17 (5), 3010–3015; https://doi.org/10.1166/jnn.2017.13076.Search in Google Scholar

Published Online: 2025-03-05
Published in Print: 2025-06-26

© 2025 IUPAC & De Gruyter

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0346/html
Scroll to top button