Startseite Impact of sustainable polysaccharide coatings on shelf-life and quality parameters of bananas
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of sustainable polysaccharide coatings on shelf-life and quality parameters of bananas

  • Carolina L. Recio-Colmenares ORCID logo , Carlos Molina-Ramírez , Diego Mauricio Sánchez-Osorno , Edgar Mauricio Santos-Ventura ORCID logo und Hasbleidy Palacios-Hinestroza ORCID logo EMAIL logo
Veröffentlicht/Copyright: 21. Juli 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

This study addresses the urgent need for sustainable alternatives to conventional plastic food packaging by developing and evaluating novel starch-based coatings enriched with chitosan and bacterial nanocellulose (BNC) derived from food waste. These coatings were applied to unripe bananas and their effectiveness in extending shelf-life was assessed over 21 days under controlled conditions. The results demonstrate that the coatings, particularly those containing chitosan, significantly reduced weight loss (up to 35 %), preserved firmness (maintaining 35 % higher firmness), and delayed the increase in reducing sugars (up to 63 % reduction at day 14), effectively doubling the shelf-life of bananas. The superior performance of chitosan-containing coatings is attributed to their film-forming properties, creating a modified atmosphere that retards ripening. This research highlights the potential of valorizing food waste into sustainable, high-performance polymeric coatings for food preservation, contributing to a circular economy in the food industry. Further research is needed to optimize the coatings for long-term effectiveness beyond 14 days.


Corresponding author: Hasbleidy Palacios-Hinestroza, Department of Basic Sciences, Campus Tlajomulco, University of Guadalajara, Tlajomulco de Zúñiga, 45641, Mexico, e-mail:
Article note: A collection of invited papers based on presentations at the Costa Rica Chemistry Congress (CR 2024) held on 23-26 July 2024 in Heredia, Costa Rica.

Funding source: MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN DE COLOMBIA (MINCIENCIAS)

Award Identifier / Grant number: 848

Funding source: Universidad de Guadalajara

Acknowledgments

In this study, generative artificial intelligence, particularly the Gemini language model, was used to review and improve the writing of the manuscript, ensuring the clarity and coherence of the text. Gemini’s assistance was useful in expediting the presentation of the re-search results and conclusions.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, CM, HP and CR; methodology, CM; formal analysis, HP and CR; investigation, CM; resources, HP, BS; writing – original draft preparation, CM; writing – review and editing, HP and CR. All authors have read and agreed to the published version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: In this study, generative artificial intelligence, particularly the Gemini language model, was used to review and improve the writing of the manuscript, ensuring the clarity and coherence of the text. Gemini’s assistance was useful in expediting the presentation of the re-search results and conclusions.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: This research was funded by MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN DE COLOMBIA (MINCIENCIAS), grant number 848 and The APC was funded by Universidad de Guadalajara.

  7. Data availability: Data is available upon request.

References

1. United Nations Environment Programme. Single-Use Plastics: A Roadmap for Sustainability; United Nations: Nairobi, 2018. https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability.Suche in Google Scholar

2. Galus, S.; Kadzińska, J. Food Applications of Emulsion-Based Edible Films and Coatings. Trends Food Sci. Technol. 2015, 45, 273–283. https://doi.org/10.1016/j.tifs.2015.07.011.Suche in Google Scholar

3. United Nations. Committee of Experts on the Transport of Dangerous Goods (1957-) Recommendations on the Transport of Dangerous Goods: Model Regulations; United Nations: Davis, California, 1997.Suche in Google Scholar

4. Kader, A. A.; Zagory, D.; Kerbel, E. L.; Wang, C. Y. Modified Atmosphere Packaging of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 1989, 28, 1–30. https://doi.org/10.1080/10408398909527490.Suche in Google Scholar PubMed

5. Pavlath, A. E.; Orts, W. Edible Films and Coatings: Why, What, and How? In Edible Films and Coatings for Food Applications; Springer New York: New York, NY, 2009; pp. 1–23.10.1007/978-0-387-92824-1_1Suche in Google Scholar

6. Mukherjee, A.; Patel, R.; Munshi, N. S.; Patel, R.; Munshi, N. S. Propellants of Microbial Fuel Cells. Prog. Recent Trends Microb. Fuel Cells 2018, 167–191. https://doi.org/10.1016/B978-0-444-64017-8.00010-5.Suche in Google Scholar

7. Pires, A. F.; Díaz, O.; Cobos, A.; Pereira, C. D. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-based Materials. Foods 2024, 13 (16), 2638. https://doi.org/10.3390/foods13162638.Suche in Google Scholar PubMed PubMed Central

8. Moorthy, S. N. Physicochemical and Functional Properties of Tropical Tuber Starches: a Review. Starch/Stärke 2002, 54, 559–592. https://doi.org/10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-F.10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-FSuche in Google Scholar

9. López, O. V.; Garcia, Maria Alejandra; Zaritzky, N. E. Film Forming Capacity of Chemically Modified Corn Starches. Elsevier; Carbohydrate Polymers 2008, 73 (4), 573–581. https://doi.org/10.1016/j.carbpol.2007.12.023.Suche in Google Scholar

10. Jiménez, A.; Fabra, M. J.; Talens, P.; Chiralt, A. Edible and Biodegradable Starch Films: a Review. Food Bioprocess Technol. 2012, 5, 2058–2076. https://doi.org/10.1007/s11947-012-0835-4.Suche in Google Scholar

11. Mishra, R.; Militky, J.; Mishra, R.; Militky, J. Nanocomposites. Nanotechnol. Textiles 2019, 263–310. https://doi.org/10.1016/B978-0-08-102609-0.00006-7.Suche in Google Scholar

12. Falguera, V.; Quintero, J. P.; Jiménez, A.; Muñoz, J. A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. https://doi.org/10.1016/J.TIFS.2011.02.004.Suche in Google Scholar

13. Fakhouri, F. M.; Martelli, S. M.; Caon, T.; Velasco, J. I.; Mei, L. H. I. Edible Films and Coatings Based on Starch/Gelatin: Film Properties and Effect of Coatings on Quality of Refrigerated Red Crimson Grapes. Postharvest Biol. Technol. 2015, 109, 57–64. https://doi.org/10.1016/J.POSTHARVBIO.2015.05.015.Suche in Google Scholar

14. Xu, Y. X.; Kim, K. M.; Hanna, M. A.; Nag, D. Chitosan–Starch Composite Film: Preparation and Characterization. Ind. Crops Prod. 2005, 21, 185–192. https://doi.org/10.1016/J.INDCROP.2004.03.002.Suche in Google Scholar

15. Koymeth, S.; Anjana Krishna, S. V.; Thomas, S.; Parameswaranpillai, J.; Midhun Dominic, C. D.; Susan George, J.; Reshmi, R. S.; Poornima Vijayan, P. Biowaste-Derived Chitosan Nanocomposite Coatings for the Preservation of Banana. Biomass Convers. Biorefin. 2024, 14 (24), 32053–32065. https://doi.org/10.1007/s13399-023-05051-6.Suche in Google Scholar

16. Marriott, J.; Palmer, J. K. Bananas — Physiology and Biochemistry of Storage and Ripening for Optimum Quality. C R C Critical Rev. Food Sci. Nutr. 1980, 13 (1), 41–88. https://doi.org/10.1080/10408398009527284.Suche in Google Scholar PubMed

17. Dita, M. A.; Garming, H.; Van den Bergh, I.; Staver, C.; Lescot, T. Banana In Latin America and The Caribbean: Current State, Challenges and Perspectives. Acta Hortic 2013 (986), 365–380. https://doi.org/10.17660/ActaHortic.2013.986.39.Suche in Google Scholar

18. Saquicela, C. P. S.; Romanova, E. V.; Cusme, V. B. A.; Delgado Quiñonez, G. H.; Alvear Falcones, J. S. Moko Disease in Latin America: a Threat to Food Security and the Economy of the Region. Theor. Appl Probl. Agro-Ind. 2023, 56 (2), 34–39. https://doi.org/10.32935/2221-7312-2023-56-2-34-39.Suche in Google Scholar

19. Molina-Ramírez, C.; Mazo, P.; Zuluaga, R.; Gañán, P.; Álvarez-Caballero, J. Characterization of Chitosan Extracted from Fish Scales of the Colombian Endemic Species Prochilodus magdalenae as a Novel Source for Antibacterial Starch-Based Films. Polymers 2021, 13, 2079. https://doi.org/10.3390/polym13132079.Suche in Google Scholar PubMed PubMed Central

20. Dwivany, F. M.; Fauziah, T.; Yamamoto, K.; Novianti, C.; Cadu Perwira, K. P.; Rizanti, M.; Radjasa, S. K.; Hakim, F. S.; Salim, A. S. P.; Putri, R. R.; Wicaksono, A.; Sumardi, D.; Putri, S. P.; Fukusaki, E.; Meitha, K.; Nugrahapraja, H. Chitosan Coating to Delay the Ripening Process in Banana: a Transcriptomics Study. Hortic. Environ. Biotechnol. 2025, 66, 123–136. https://doi.org/10.1007/s13580-024-00642-2.Suche in Google Scholar

21. Koymeth, S.; Anjana Krishna, S. V.; Thomas, S.; Parameswaranpillai, J.; Midhun Dominic, C. D.; Susan George, J.; Reshmi, R. S.; Poornima Vijayan, P. Biowaste-Derived Chitosan Nanocomposite Coatings for the Preservation of Banana. Biomass Conv. Bioref. 2024, 14, 32053–32065. https://doi.org/10.1007/s13399-023-05051-6.Suche in Google Scholar

22. Von Loeiecke, H. Bananas; Inter Science Publishers: New York, 1949, p. 189.Suche in Google Scholar

23. Thakur, R.; Pristijono, P.; Bowyer, M.; Singh, S. P.; Scarlett, C. J.; Stathopoulos, C. E.; Vuong, Q. V. A Starch Edible Surface Coating Delays Banana Fruit Ripening. LWT 2019, 100, 341–347. https://doi.org/10.1016/j.lwt.2018.10.055.Suche in Google Scholar

24. Subedi, P. P.; Walsh, K. B. Non-Invasive Techniques for Measurement of Fresh Fruit Firmness Postharvest Biology and Technology. Postharvest Biol. Technol. 2009, 51 (3), 297–304. https://doi.org/10.1016/J.POSTHARVBIO.2008.03.004.Suche in Google Scholar

25. Deng, Z.; Jung, J.; Simonsen, J.; Zhao, Y. Cellulose Nanomaterials Emulsion Coatings for Controlling Physiological Activity, Modifying Surface Morphology, and Enhancing Storability of Postharvest Bananas (Musa Acuminate). Food Chem. 2017, 232, 359–368. https://doi.org/10.1016/j.foodchem.2017.04.028.Suche in Google Scholar PubMed

26. Kittur, F. S.; Saroja, N.; Habibunnisa; Tharanathan, R.; Tharanathan, R. N. Polysaccharide-Based Composite Coating Formulations for Shelf-Life Extension of Fresh Banana and Mango. Eur. Food Res. Technol. 2001, 213, 306–311. https://doi.org/10.1007/s002170100363.Suche in Google Scholar

27. Gol, N. B.; Ramana Rao, T. V. Banana Fruit Ripening as Influenced by Edible Coatings. Int. J. Fruit Sci. 2011, 11, 119–135. https://doi.org/10.1080/15538362.2011.578512.Suche in Google Scholar

28. Cordenunsi-Lysenko, B. R.; Nascimento, J. R. O.; Castro-Alves, V. C.; Purgatto, E.; Fabi, J. P.; Peroni-Okyta, F. H. G. The Starch Is (Not) Just Another Brick in the Wall: the Primary Metabolism of Sugars During Banana Ripening. Front. Plant Sci. 2019, 10. https://doi.org/10.3389/fpls.2019.00391.Suche in Google Scholar PubMed PubMed Central

29. Prasad, R.; Bhattacharyya, A.; Nguyen, Q. D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017, 8, 1014. https://doi.org/10.3389/fmicb.2017.01014.Suche in Google Scholar PubMed PubMed Central

30. Soradech, S.; Nunthanid, J.; Limmatvapirat, S.; Luangtana-anan, M. Utilization of Shellac and Gelatin Composite Film for Coating to Extend the Shelf Life of Banana. Food Control 2017, 73, 1310–1317. https://doi.org/10.1016/j.foodcont.2016.10.059.Suche in Google Scholar

31. Win, N. K. K.; Jitareerat, P.; Kanlayanarat, S.; Sangchote, S. Effects of Cinnamon Extract, Chitosan Coating, Hot Water Treatment and Their Combinations on Crown Rot Disease and Quality of Banana Fruit. Postharvest Biol. Technol. 2007, 45, 333–340. https://doi.org/10.1016/j.postharvbio.2007.01.020.Suche in Google Scholar

32. Suseno, N.; Savitri, E.; Sapei, L.; Padmawijaya, K. S. Improving Shelf-Life of Cavendish Banana Using Chitosan Edible Coating. Procedia Chemistry 2014, 9, 113–120. https://doi.org/10.1016/j.proche.2014.05.014.Suche in Google Scholar

33. Zhao, S.; Jia, R.; Yang, J.; Dai, L.; Ji, N.; Xiong, L.; Sun, Q. Development of Chitosan/Tannic Acid/Corn Starch Multifunctional Bilayer Smart Films as PH-Responsive Actuators and for Fruit Preservation. Int. J. Biol. Macromol. 2022, 205, 419–429. https://doi.org/10.1016/j.ijbiomac.2022.02.101.Suche in Google Scholar PubMed

34. Maqbool, M.; Ali, A.; Alderson, P. G.; Zahid, N.; Siddiqui, Y. Effect of a Novel Edible Composite Coating Based on Gum Arabic and Chitosan on Biochemical and Physiological Responses of Banana Fruits during Cold Storage. J. Agric. Food Chem. 2011, 59, 5474–5482. https://doi.org/10.1021/jf200623m.Suche in Google Scholar PubMed

35. Dwivany, F. M.; Fauziah, T.; Yamamoto, K.; Novianti, C.; Cadu Perwira, K. P.; Rizanti, M.; Radjasa, S. K.; Hakim, F. S.; Salim, A. S. P.; Putri, R. R.; Wicaksono, A.; Sumardi, D.; Putri, S. P.; Fukusaki, E.; Meitha, K.; Nugrahapraja, H. Chitosan Coating to Delay the Ripening Process in Banana: A Transcriptomics Study. Hortic. Environ. Biotechnol. 2025, 66 (1), 123–136. https://doi.org/10.1007/s13580-024-00642-2.Suche in Google Scholar

36. Basiak, E.; Linke, M.; Debeaufort, F.; Lenart, A.; Geyer, M. Dynamic Behaviour of Starch- Based Coatings on Fruit Surfaces. Postharvest Biol. Technol. 2019, 147, 166–173. https://doi.org/10.1016/j.postharvbio.2018.09.020.Suche in Google Scholar

37. Nugrahapraja, H.; Syam, F.; Momole, J.; Meitha, K.; Wicaksono, A.; Moeis, M. R.; Radjasa, O. K.; Dwivany, F. M. Response of the Microbial Community in Unripe and Ripe Bananas with Chitosan Treatment to Delay Fruit Ripening. Agric. Res. 2024. https://doi.org/10.1007/s40003-024-00817-4.Suche in Google Scholar

38. Sinha, A.; Gill, P. P. S.; Jawandha, S. K.; Kaur, P.; Grewal, S. K. Chitosan-Enriched Salicylic Acid Coatings Preserves Antioxidant Properties and Alleviates Internal Browning of Pear Fruit Under Cold Storage and Supermarket Conditions. Postharvest Biol. Technol. 2021, 182, 111721. https://doi.org/10.1016/j.postharvbio.2021.111721.Suche in Google Scholar

39. van den Broek, L. A. M.; Knoop, R. J. I.; Kappen, F. H. J.; Boeriu, C. G. Chitosan Films and Blends for Packaging Material. Carbohydr. Polym. 2015, 116, 237–242. https://doi.org/10.1016/j.carbpol.2014.07.039.Suche in Google Scholar PubMed

40. Aider, M. Chitosan Application for Active Bio-based Films Production and Potential in the Food Industry: Review. LWT–Food Sci. Technol. 2010, 43, 837–842. https://doi.org/10.1016/j.lwt.2010.01.021.Suche in Google Scholar

41. Martínez-Camacho, A. P.; Cortez-Rocha, M. O.; Ezquerra-Brauer, J. M.; Graciano-Verdugo, A. Z.; Rodriguez-Félix, F.; Castillo-Ortega, M. M.; Yépiz-Gómez, M. S.; Plascencia-Jatomea, M. Chitosan Composite Films: Thermal, Structural, Mechanical and Antifungal Properties. Carbohydr. Polym. 2010, 82, 305–315. https://doi.org/10.1016/j.carbpol.2010.04.069.Suche in Google Scholar

42. Taweechat, C.; Wongsooka, T.; Rawdkuen, S. Properties of Banana (Cavendish spp.) Starch Film Incorporated with Banana Peel Extract and Its Application. Molecules 2021, 26, 1406. https://doi.org/10.3390/molecules26051406.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0295).


Received: 2024-10-22
Accepted: 2025-06-24
Published Online: 2025-07-21

© 2025 IUPAC & De Gruyter

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0295/html
Button zum nach oben scrollen