Green synthesis of zinc oxide nanoparticles for the control of insects that damage historical and art pieces made of wood
-
Sofia Benavides-Castellanos
Abstract
Wood is one of the most versatile materials, including religious symbols and carved works of art. However, it is a material that is vulnerable to biodeterioration by insects, fungi, and other organisms. Biodeterioration by xylophagous insects is one of the main problems for the conservation of wooden objects; however, control methods are focused on insecticides which can be harmful and toxic to humans and the environment. In this work, the use of zinc oxide nanoparticles obtained by green synthesis with an aqueous extract of agro-industrial waste such as orange peels and zinc nitrate was proposed. It porposes an alternative to the use of toxic substances against the attack of Bostrichidae xylophagous insects of the genus Prostephanus on wood. The results obtained show that the chemical composition of orange peels extract is a good alternative for the green synthesis of zinc oxide nanoparticles. Information obtained from SEM, SEM-EDX and TEM analysis of the material provided agglomerated structural morphology, zinc oxide composition and particle size on the nanometric scale. Preliminary studies of the biocidal activity of zinc oxide nanoparticles alone and in ethanol suspension (1, 3, 5 %) demonstrated the effective protection of broadleaf wood blocks against the attack of the xylophagous insect Brostrichidae of the Prostephanus genus. The biocidal activity increased up to 75 % when zinc oxide nanoparticles were applied directly rather than in ethanolic suspension. Furthermore, the nanoparticles increased water absorption capacity played an important role in removing local moisture from the cavity, which is vital for the insect’s development at the larval stage.
Funding source: Consejo Nacional de Humanidades, Ciencias y Tecnologia
Award Identifier / Grant number: Grant No. 775715
Acknowledgments
The authors thank to Dr. José Luis Navarrete Heredia from the entomology laboratory (CUCBA/UdeG) for the taxonomic identification of the insects. S. B.-C. also thanks CONAHCYT of Mexico for the scholarship received (Grant No. 775715).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. S. B.-C.: data curation, formal analysis, investigation, methodology, writing – original draft, review & editing. F. G.-G.: data curation, formal analysis, visualization, writing – original draft, review & editing. M. G. L.-R.: conceptualization, formal analysis, supervision. J. A. S.-G.: conceptualization, supervision, funding acquisition. I. H.-D.: data curation, supervision. A. B.-A.: data curation, supervision. R. M.-G.: conceptualization, formal analysis, methodology, supervision, validation, project administration, writing – review and editing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: CONAHCYT of Mexico for the S.B.-C. scholarship received (Grant No. 775715).
-
Data availability: Not applicable.
References
1. Cruz Chagoyán, G.; Olvera Coronel, L. P.; Velasco Figueroa, I. Los Soportes de Madera en Esculturas Policromadas Mexicanas, Restauradas en la ENCRyM. Rev. Inter. Conserv. Restaur. Museol. 2010, 1 (1), 34–45; https://doi.org/10.30763/Intervencion.2010.2.21.Suche in Google Scholar
2. Hickin, N. E. Insect Damage in the Decorative Arts – a World Problem. Stud. Conserv. 1978, 23 (sup1), 19–22. https://doi.org/10.1179/sic.1978.s006.Suche in Google Scholar
3. Stanhope, J.; Weinstein, P. Note to Chew on: Insect Damage to Musical Instruments. Pest Manage. Sci. 2020, 76 (11), 3537–3540. https://doi.org/10.1002/ps.5941.Suche in Google Scholar PubMed
4. Querner, P. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings. Insects 2015, 6 (2), 595–607. https://doi.org/10.3390/insects6020595.Suche in Google Scholar PubMed PubMed Central
5. Pico Brizuela, P. Caracterización y evaluación de propiedades mecánicas de un compuesto plástico madera (CPM) empleado como material de relleno para oquedades causada por termitas en esculturas de madera policromada. Bachelor’s thesis; Escuela de Conservación y Restauración de Bienes Muebles, 2013.Suche in Google Scholar
6. Valgañon, V. Biología Aplicada a la Conservación y Restauración. In Síntesis, 2008; pp. 129–130.Suche in Google Scholar
7. Shiny, K. S.; Sundararaj, R. Biologically Synthesized Copper Oxide and Zinc Oxide Nanoparticle Formulation as an Environmentally Friendly Wood Protectant for the Management of Wood Borer, Lyctus africanus. Maderas. Ciencia y tecnología 2021, 23 (sup1), 19–22. https://doi.org/10.4067/S0718-221X2021000100447.Suche in Google Scholar
8. Sameño Puerto, M.; Rubio Faure, C. Métodos de Control Biológico Aplicados a Escultura en Madera. Algunos Ejemplos en el IAPH. Revista 1998, PH, 46. https://doi.org/10.33349/1998.23.645.Suche in Google Scholar
9. Borges, C. C.; Tonoli, G. H. D.; Cruz, T. M.; Duarte, P. J.; Junqueira, T. A. Nanoparticles-Based Wood Preservatives: The Next Generation of Wood Protection? CERNE 2018, 24 (4), 397–407. https://doi.org/10.1590/01047760201824042531.Suche in Google Scholar
10. Lepage, E.; de Salis, A. G.; Guedes, E. C. R.; Montana Química, S. A. Tecnologia de Proteção da Madeira, 1 ed., 2017; p. 225.Suche in Google Scholar
11. Lara Lafargue, G.; Aparicio Medina, J. M.; Lauzardo Acosta, A.; Martínez Llanes, Y.; Piretrinas y Piretroides. In Anuario Ciencia En La UNAH, vol. 16, 2018. https://www.studocu.com/es-mx/document/universidad-vasconcelos-de-tabasco/instalaciones-superficiales/plaguicidas/52854261 (accessed May 8, 2024).Suche in Google Scholar
12. Marshall, S.; Sharley, D.; Jeppe, K.; Sharp, S.; Rose, G.; Pettigrove, V. Potentially Toxic Concentrations of Synthetic Pyrethroids Associated with Low Density Residential Land Use. Front. Environ. Sci. 2016, 4. https://doi.org/10.3389/fenvs.2016.00075.Suche in Google Scholar
13. Huff Hartz, K. E.; Nutile, S. A.; Fung, C. Y.; Sinche, F. L.; Moran, P. W.; Van Metre, P. C.; Nowell, L. H.; Lydy, M. J. Survey of Bioaccessible Pyrethroid Insecticides and Sediment Toxicity in Urban Streams of the Northeast United States. Environ. Pollut. 2019, 254, 112931. https://doi.org/10.1016/j.envpol.2019.07.099.Suche in Google Scholar PubMed
14. Terzi, E.; Kartal, S. N.; Yılgör, N.; Rautkari, L.; Yoshimura, T. Role of Various Nanoparticles in Prevention of Fungal Decay, Mold Growth and Termite Attack in Wood, and their Effect on Weathering Properties and Water Repellency. Int. Biodeter. Biodegrad. 2016, 107, 77–87. https://doi.org/10.1016/j.ibiod.2015.11.010.Suche in Google Scholar
15. Caneva, G.; Tescari, M. Stone biodeterioration: Treatments and preventive conservation. In Proceedings of the 2017 International Symposium of Stone Conservation, Conservation Technologies for Stone Cultural Heritages: Status and Future Prospects, Seoul, Korea, Vol. 21, 2017.Suche in Google Scholar
16. Clausen, C. A.; Green, F.; Nami Kartal, S. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide. Nanoscale Res. Lett. 2010, 5 (9), 1464–1467. https://doi.org/10.1007/s11671-010-9662-6.Suche in Google Scholar PubMed PubMed Central
17. Nair, S.; Nagarajappa, G. B.; Pandey, K. K. UV Stabilization of Wood by Nano Metal Oxides Dispersed in Propylene Glycol. J. Photochem. Photobiol. B: Biol. 2018, 183, 1–10. https://doi.org/10.1016/j.jphotobiol.2018.04.007.Suche in Google Scholar PubMed
18. Lykidis, C.; De Troya, T.; Conde, M.; Galván, J.; Mantanis, G. Termite Resistance of Beech Wood Treated with Zinc Oxide and Zinc Borate Nanocompounds. Wood Mater. Sci. Eng. 2018, 13 (1), 45–49. https://doi.org/10.1080/17480272.2016.1257651.Suche in Google Scholar
19. Vijayaraghavan, K.; Ashokkumar, T. Plant-Mediated Biosynthesis of Metallic Nanoparticles: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J. Environ. Chem. Eng. 2017, 5 (5), 4866–4883. https://doi.org/10.1016/j.jece.2017.09.026.Suche in Google Scholar
20. Boroumand Moghaddam, A.; Namvar, F.; Moniri, M.; Tahir, P. Md.; Azizi, S.; Mohamad, R. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules 2015, 20 (9), 16540–16565. https://doi.org/10.3390/molecules200916540.Suche in Google Scholar PubMed PubMed Central
21. Hulkoti, N. I.; Taranath, T. C. Biosynthesis of Nanoparticles Using Microbes—A Review. Colloids Surf. B: Biointerf. 2014, 121, 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027.Suche in Google Scholar PubMed
22. Sarkar, J.; Ghosh, M.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Biosynthesis, K. and Safety Evaluation of ZnO Nanoparticles. Bioprocess Biosyst. Eng. 2014, 37 (2), 165–171. https://doi.org/10.1007/s00449-013-0982-7.Suche in Google Scholar PubMed
23. Singh, J.; Dutta, T.; Kim, K-H.; Rawat, M.; Samddar, P.; Kumar, P. Green’ Synthesis of Metals and their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16 (1), 84. https://doi.org/10.1186/s12951-018-0408-4.Suche in Google Scholar PubMed PubMed Central
24. Michael-Igolima, U.; Abbey, S. J.; Ifelebuegu, A. O.; Eyo, E. U. Modified Orange Peel Waste as a Sustainable Material for Adsorption of Contaminants. Materials 2023, 16 (3), 1092. https://doi.org/10.3390/ma16031092.Suche in Google Scholar PubMed PubMed Central
25. Ayala, J. R.; Montero, G.; Coronado, M. A.; García, C.; Curiel-Alvarez, M. A.; León, J. A.; Sagaste, C. A.; Montes, D. G. Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules 2021, 26 (5), 1348. https://doi.org/10.3390/molecules26051348.Suche in Google Scholar PubMed PubMed Central
26. Doan Thi, T. U.; Nguyen, T. T.; Thi, Y. D.; Ta Thi, K. H.; Phan, B. T.; Pham, K. N. Green Synthesis of ZnO Nanoparticles Using Orange Fruit Peel Extract for Antibacterial Activities. RSC Adv. 2020, 10 (40), 23899–23907. https://doi.org/10.1039/D0RA04926C.Suche in Google Scholar
27. Morales Rivé, R. D. R. Extracción de pectina de cáscara de naranja por hidrólisis ácida asistida por microondas. Rev. Cient. Estud. Investig. 2019, 8, 271–272. https://doi.org/10.26885/rcei.foro.2019.271.Suche in Google Scholar
28. Al-darwesh, M. Y.; Ibrahim, S. S.; Mohammed, M. A. A Review on Plant Extract Mediated Green Synthesis of Zinc Oxide Nanoparticles and Their Biomedical Applications. Results Chem. 2024, 7, 101368. https://doi.org/10.1016/j.rechem.2024.101368.Suche in Google Scholar
29. Chandra, H.; Patel, D.; Kumari, P.; Jangwan, J. S.; Yadav, S. Phyto-Mediated Synthesis of Zinc Oxide Nanoparticles of Berberis aristata: Characterization, Antioxidant Activity and Antibacterial Activity with Special Reference to Urinary Tract Pathogens. Mater. Sci. Eng. C 2019, 102, 212–220. https://doi.org/10.1016/j.msec.2019.04.035.Suche in Google Scholar PubMed
30. Rajeshkumar, S.; Parameswari, R. P.; Sandhiya, D.; Al-Ghanim, K. A.; Nicoletti, M.; Govindarajan, M. Green Synthesis, Characterization and Bioactivity of Mangifera Indica Seed-Wrapped Zinc Oxide Nanoparticles. Molecules 2023, 28, 2818. https://doi.org/10.3390/molecules28062818.Suche in Google Scholar PubMed PubMed Central
31. Jobie, F. N.; Ranjbar, M.; Moghaddam, A. H.; Kiani, M. Green Synthesis of Zinc Oxide Nanoparticles Using Amygdalus scoparia Spach Stem Bark Extract and their Applications as an Alternative Antimicrobial, Anticancer, and Anti-Diabetic Agent. Adv. Powder Technol. 2021, 32 (6), 2043–2052. https://doi.org/10.1016/j.apt.2021.04.014.Suche in Google Scholar
32. Digisu, A. W.; Yaebyo, A. B.; Kebede, W. L.; Kebede, D. Y.; Molla, D. K. Biogenic Synthesis, Optimization, and Characterization of Zinc Oxide Nanoparticles Using Rumex abyssinicus Jacq Root Extract for Antioxidant and Antibacterial Activities. Results Chem. 2024, 12, 101857. https://doi.org/10.1016/j.rechem.2024.101857.Suche in Google Scholar
33. Faisal, S.; Jan, H.; Ali Shah, S.; Shah, S.; Khan, A.; Taj Akbar, M.; Rizwan, M.; Jan, F.; Akhtar, N.; Khattak, A.; Syed, S.. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 2021, 6 (14), 9709–9722. https://doi.org/10.1021/acsomega.1c00310.Suche in Google Scholar PubMed PubMed Central
34. Manojkumar, U.; Kaliannan, D.; Srinivasan, V.; Balasubramanian, B.; Kamyab, H.; Mussa, Z. H.; Palaniyappan, J.; Mesbah, M.; Chelliapan, S.; Palaninaicker, S. Green Synthesis of Zinc Oxide Nanoparticles Using Brassica oleracea var. Botrytis Leaf Extract: Photocatalytic, Antimicrobial and Larvicidal Activity. Chemosphere 2023, 323, 138263. https://doi.org/10.1016/j.chemosphere.2023.138263.Suche in Google Scholar PubMed
35. Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A. Fruit Peel Extract Mediated Green Synthesis of Zinc Oxide Nanoparticles. J. Mol. Struct. 2017, 1147, 1–6. https://doi.org/10.1016/j.molstruc.2017.06.078.Suche in Google Scholar
36. Castro Rubio, C. Efecto del ácido jasmónico y ácido salicílico sobre la producción de fenoles y flavonoides totales y actividad antioxidante en un cultivo de ríces de Acmella radicans. Master’s thesis; Universidad de Guadalajara, 2020.Suche in Google Scholar
37. Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31 (3), 426–428. https://doi.org/10.1021/ac60147a030.Suche in Google Scholar
38. Mejía Mesa, L. C. Especies maderables para la cría en laboratorio de Lyctus brunneus (Stephens) (Coleoptera: Lyctudae), vol. 50, 1997; pp. 45–61.Suche in Google Scholar
39. Hasheminya, S.-M.; Dehghannya, J. Green Synthesis and Characterization of Copper Nanoparticles Using Eryngium Caucasicum Trautv Aqueous Extracts and its Antioxidant and Antimicrobial Properties. Part. Sci. Technol. 2020, 38 (8), 1019–1026. https://doi.org/10.1080/02726351.2019.1658664.Suche in Google Scholar
40. Durmazel, S.; Üzer, A.; Erbil, B.; Sayın, B.; Apak, R. Silver Nanoparticle Formation-Based Colorimetric Determination of Reducing Sugars in Food Extracts via Tollens’ Reagent. ACS Omega 2019, 4 (4), 7596–7604. https://doi.org/10.1021/acsomega.9b00761.Suche in Google Scholar PubMed PubMed Central
41. Jiménez-Rosado, M.; Gomez-Zavaglia, A.; Guerrero, A.; Romero, A. Green Synthesis of ZnO Nanoparticles using Polyphenol Extracts from Pepper Waste (Capsicum annuum). J. Clean. Prod. 2022, 350, 131541. https://doi.org/10.1016/j.jclepro.2022.131541.Suche in Google Scholar
42. Ghramh, H. A.; Ibrahim, E. H.; Ahmad, Z. Antimicrobial, Immunomodulatory, and Cytotoxic Activities of Green Synthesized Nanoparticles from Acacia honey and Calotropis procera. Saudi J. Biol. Sci. 2021, 28 (6), 3367–3373. https://doi.org/10.1016/j.sjbs.2021.02.085.Suche in Google Scholar PubMed PubMed Central
43. Haiza, H.; Azizan, A.; Mohidin, A. H.; Halin, D. S. C. Green Synthesis of Silver Nanoparticles Using Local Honey. Nano Hybrids 2013, 4, 87–98. https://doi.org/10.4028/www.scientific.net/NH.4.87.Suche in Google Scholar
44. Naveenkumar, S.; Chandramohan, S.; Muthukumaran, A. A Novel Synthesis of Zinc Oxide Nanoparticles Using Various Carbohydrate Sources and its Antimicrobial Effects. Mater. Today: Proc. 2021, 36, 520–525. https://doi.org/10.1016/j.matpr.2020.05.321.Suche in Google Scholar
45. Sahu, N.; Soni, D.; Chandrashekhar, B.; Satpute, D. B.; Saravanadevi, S.; Sarangi, B. K.; Pandey, R. A. Synthesis of Silver Nanoparticles Using Flavonoids: Hesperidin, Naringin And Diosmin, And their Antibacterial Effects and Cytotoxicity. Int. Nano Lett. 2016, 6 (3), 173–181. https://doi.org/10.1007/s40089-016-0184-9.Suche in Google Scholar
46. Saleemi, M. A.; Alallam, B.; Yong, Y. K.; Lim, V. Synthesis of Zinc Oxide Nanoparticles with Bioflavonoid Rutin: Characterization, Antioxidant and Antimicrobial Activities and In Vivo Cytotoxic Effects on Artemia Nauplii. Antioxidants 2022, 11 (10), 1853. https://doi.org/10.3390/antiox11101853.Suche in Google Scholar PubMed PubMed Central
47. Abdullah, J. A. A.; Rosado, M. J.; Guerrero, A.; Romero, A. Eco-Friendly Synthesis of ZnO-Nanoparticles Using Phoenix Dactylifera L., Polyphenols: Physicochemical, Microstructural, and Functional Assessment. New J. Chem. 2023, 47 (9), 4409–4417. https://doi.org/10.1039/D3NJ00131H.Suche in Google Scholar
48. Maher, S.; Nisar, S.; Aslam, S. M.; Saleem, F.; Behlil, F.; Imran, M.; Assiri, M. A.; Nouroz, A.; Naheed, N.; Khan, Z. A.; Aslam, P. Synthesis and Characterization of ZnO Nanoparticles Derived from Biomass (Sisymbrium Irio) and Assessment of Potential Anticancer Activity. ACS Omega 2023, 8 (18), 15920–15931. https://doi.org/10.1021/acsomega.2c07621.Suche in Google Scholar PubMed PubMed Central
49. Srivastava, N.; Srivastava, M.; Mishra, P. K.; Kumar Gupta, V. Green Synthesis of Nanomaterials for Bioenergy Applications. ISBN: 978-1-119-57679-2; Wiley Blac, 2021; pp. 23–163.Suche in Google Scholar
50. Ghorbani, H.; Mehr, F.; Pazoki, H.; Rahmani, B. Synthesis of ZnO nanoparticles by Precipitation Method. Orient. J. Chem. 2015, 31 (2), 1219–1221. https://doi.org/10.13005/ojc/310281.Suche in Google Scholar
51. Hameed, H.; Waheed, A.; Sharif, M. S.; Saleem, M.; Afreen, A.; Tariq, M.; Kamal, A.; Alonazi, W. A.; Al Farraj, D. A.; Ahmad, S.; Mahmoud, R. M. Green synthesis of Zinc Oxide (ZnO) Nanoparticles from Green Algae and their Assessment in Various Biological Applications. Micromachines 2023, 14 (5), 928. https://doi.org/10.3390/mi14050928.Suche in Google Scholar PubMed PubMed Central
52. Song, Z.; Kelf, T. A.; Sanchez, W. H.; Roberts, M. S.; Rička, J.; Frenz, M.; Zvyagin, A. V. Characterization of Optical Properties of ZnO Nanoparticles for Quantitative Imaging of Transdermal Transport. Biomed. Opt. Express 2011, 2 (12), 3321. https://doi.org/10.1364/BOE.2.003321.Suche in Google Scholar PubMed PubMed Central
53. Lilly Grace, M. A.; Veerabhadra Rao, K.; Anuradha, K.; Judith Jayarani, A.; Arun kumar, A.; Rathika, A. X-Ray Analysis and Size-Strain Plot of Zinc Oxide Nanoparticles by Williamson-Hall. Mater. Today: Proc. 2023, 92, 1334–1339. https://doi.org/10.1016/j.matpr.2023.05.492.Suche in Google Scholar
54. Luque, P. A.; Soto-Robles, C. A.; Nava, O.; Gomez-Gutierrez, C. M.; Castro-Beltran, A.; Garrafa-Galvez, H. E.; Vilchis-Nestor, A. R.; Olivas, A. Green Synthesis of Zinc Oxide Nanoparticles Using Citrus Sinensis Extract. J. Mater. Sci.: Mater. Electron. 2018, 29 (12), 9764–9770. https://doi.org/10.1007/s10854-018-9015-2.Suche in Google Scholar
55. Talam, S.; Karumuri, S. R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol. 2012, 2012, 1–6. https://doi.org/10.5402/2012/372505.Suche in Google Scholar
56. Huang, C.; Mou, W.; Li, J.; Liu, T. Extremely Well-Dispersed Zinc Oxide Nanofluids with Excellent Antibacterial, Antifungal, and Formaldehyde and Toluene Removal Properties. Ind. Eng. Chem. Res. 2022, 61 (11), 3973–3982. https://doi.org/10.1021/acs.iecr.2c00369.Suche in Google Scholar
57. Chen, Z.-Y.; Shao, W.-Z.; Li, W.-J.; Sun, X.-Y.; Zhen, L.; Li, Y. Suppressing the Agglomeration of ZnO Nanoparticles in Air by Doping with Lower Electronegativity Metallic Ions: Implications for Ag/ZnO Electrical Contact Composites. ACS Appl. Nano Mater. 2022, 5 (8), 10809–10817. https://doi.org/10.1021/acsanm.2c02129.Suche in Google Scholar
58. Abdelmonem, A. M.; Pelaz, B.; Kantner, K.; Bigall, N. C.; del Pino, P.; Parak, W. J. Charge and Agglomeration Dependent In Vitro Uptake and Cytotoxicity of Zinc Oxide Nanoparticles. J. Inorg. Biochem. 2015, 153, 334–338. https://doi.org/10.1016/j.jinorgbio.2015.08.029.Suche in Google Scholar PubMed
59. Lee, H.-I.; Kwon, R.-Y.; Choi, S.-J. Food Additive Solvents Increase the Dispersion, Solubility, and Cytotoxicity of ZnO Nanoparticles. Nanomaterials 2023, 13 (18), 2573. https://doi.org/10.3390/nano13182573.Suche in Google Scholar PubMed PubMed Central
60. Mohan, A. C.; Renjanadevi, B. Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). Procedia Technology 2016, 24, 761–766. https://doi.org/10.1016/j.protcy.2016.05.078.Suche in Google Scholar
61. Wang, J.; Ji, H. Effect of Preparation Conditions on the Properties of Nano ZnO Powders During Ultrasonic Assisted Direct Precipitation Process. PLoS One 2023, 18 (8), e0286765. https://doi.org/10.1371/journal.pone.0286765.Suche in Google Scholar PubMed PubMed Central
62. Gonbadi, M.; Sabbaghi, S.; Rasouli, J.; Rasouli, K.; Saboori, R.; Narimani, M. Green Synthesis of ZnO Nanoparticles for Spent Caustic Recovery: Adsorbent Characterization and Process Optimization Using I-Optimal Method. Inorg. Chem. Commun. 2023, 158, 111460. https://doi.org/10.1016/j.inoche.2023.111460.Suche in Google Scholar
63. Janaki, A. C.; Sailatha, E.; Gunasekaran, S. Synthesis, Characteristics, and Antimicrobial Activity of ZnO Nanoparticles. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 2015, 144, 17–22. https://doi.org/10.1016/j.saa.2015.02.041.Suche in Google Scholar PubMed
64. Kumar, A.; Dixit, C. K. Methods for Characterization of Nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Elsevier, 2017; pp. 43–58.10.1016/B978-0-08-100557-6.00003-1Suche in Google Scholar
65. Gupta, M.; Tomar, R. S.; Kaushik, S.; Mishra, R. K.; Sharma, D. Effective Antimicrobial Activity of Green ZnO Nano Particles of Catharanthus Roseus. Front. Microbiol. 2018, 9, 2030. https://doi.org/10.3389/fmicb.2018.02030.Suche in Google Scholar PubMed PubMed Central
66. Clogston, J. D.; Patri, A. K. Zeta Potential Measurement. Methods Mol. Biol. 2011, 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6.Suche in Google Scholar PubMed
67. Hidayat Chai, M. H.; Amir, N.; Yahya, N.; Saaid, I. M. Characterization and colloidal stability of surface modified Zinc Oxide nanoparticle. J. Phys.: Conf. Ser. 2018, 1123, 012007. https://doi.org/10.1088/1742-6596/1123/1/012007.Suche in Google Scholar
68. Faisal, S.; Jan, H.; Shah, S. A.; Shah, S.; Khan, A.; Akbar, M. T.; Rizwan, M.; Jan, F.; Wajidullah, N.; Khattak, A.; Syed, S.. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 2021, 6 (14), 9709–9722. https://doi.org/10.1021/acsomega.1c00310.Suche in Google Scholar PubMed PubMed Central
69. Agredo-Gomez, A. D.; Molano-Molano, J. A.; Portela-Patiño, M. C.; Rodríguez-Páez, J. E. Use of ZnO Nanoparticles as a Pesticide: In Vitro Evaluation of their Effect on the Phytophagous Puto barberi (mealybug). Nano-Struct. Nano-Objects 2024, 37 (1), 101095. https://doi.org/10.1016/j.nanoso.2024.101095.Suche in Google Scholar
70. Bourne-Murrieta, L. R.; Wong-Corral, F. J.; Borboa-Flores, J.; Cinco-Moroyoqui, F. J. Damage Caused by the Larger Grain Borer Prostephanus truncatus (horn) (Coleoptera: Bostrichidae) in Corn and Branches of Wild Plants. Rev. Chapingo Ser. Cienc. For. Ambiente. 2014, XX (1), 63–75. https://doi.org/10.5154/r.rchscfa.2013.03.008.Suche in Google Scholar
71. Raduw, G. G.; Mohammed, A. A. Insecticidal Efficacy of Three Nanoparticles for the Control of Khapra Beetle (Trogoderma granarium) on Different Grains. J. Agric. Urban Entomol. 2020, 36 (1), 90. https://doi.org/10.3954/1523-5475-36.1.90.Suche in Google Scholar
72. Athanassiou, C. G.; Phillips, T. W.; Wakil, W. Biology and Control of the Khapra Beetle, Trogoderma granarium , a Major Quarantine Threat to Global Food Security. Annu. Rev. Entomol. 2019, 64 (1), 131–148. https://doi.org/10.1146/annurev-ento-011118-111804.Suche in Google Scholar PubMed
73. Quellhorst, H.; Athanassiou, C. G.; Zhu, K. Y.; Morrison, W. R. The Biology, Ecology and Management of the Larger Grain Borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res. 2021, 94, 101860. https://doi.org/10.1016/j.jspr.2021.101860.Suche in Google Scholar
74. Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J. J.; Sing, K. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0282).
© 2025 IUPAC & De Gruyter