Home Coconut shell-derived green synthesised carbon nanotubes for clean-up of crude oil spills
Article
Licensed
Unlicensed Requires Authentication

Coconut shell-derived green synthesised carbon nanotubes for clean-up of crude oil spills

  • Mansur Yahaya Ibrahim EMAIL logo and Hadi Sulaiman
Published/Copyright: June 10, 2024

Abstract

The global economy has led to an increase in oil transportation and exploitation, posing a threat to aquatic and terrestrial ecosystems. Crude oil spilled water purification is a major challenge worldwide. Researchers are focusing on finding adsorbents that improve oil adsorption capability. In the present study the adsorption of crude oil using synthesized carbon nanotubes (CNTs) prepared from coconut shell was investigated by batch adsorption experiments under varying parameters (adsorbent dosage and contact time) after analytical techniques (UV–vis, FTIR and SEM) confirmed the formation of the CNTs. The morphological modification significantly increased the hydrophobicity of the adsorbent, thus creating a synthesized CNTs with a much better adsorption capacity for crude oil removal having a maximum adsorption capacity of 4855.8 mg/g. The experimental results showed that the percentage of crude oil removal increased with an increase in adsorbent dosage and the contact time respectively. According to the correlation coefficient (R 2 = 0.9801) value obtained from the adsorption isotherm investigations, the isotherms were found to fit the Freundlich isotherm somewhat better than the Langmuir isotherm model, which is consistent with the findings reported in the literature. These findings have made the synthesised CNTs an attractive, useful, and environmentally friendly adsorbent for controlling crude oil spill.


Corresponding author: Mansur Yahaya Ibrahim, Department of Pure and Industrial Chemistry, Sokoto State University, Sokoto, Nigeria, e-mail:
Article note: A collection of invited papers based on presentations at the African Early Career Chemists Workshop and 8th ACS Nigerian Chapter Symposium.

References

[1] A. H. Walker, R. Pavia, A. Bostrom, T. M. Leschine, K. Starbird. Hum. Ecol. Risk Assess.: Int. J. 21, 667 (2014), https://doi.org/10.1080/10807039.2014.947869.Search in Google Scholar

[2] J. Chen, W. Zhang, Z. Wan, S. Li, T. Huang, Y. Fei. J. Cleaner Prod. 227, 20 (2019), https://doi.org/10.1016/j.jclepro.2019.04.020.Search in Google Scholar

[3] M. Büber, B. Köseoğlu. Mar. Sci. Tech. Bull. 11, 123 (2022), https://doi.org/10.33714/masteb.1081670.Search in Google Scholar

[4] A. J. Adesanmi, O. B. Okedere, J. A. Sonibare, F. B. Elehinafe, B. S. Fakinle. Environ. Challenges 5, 100334 (2021), https://doi.org/10.1016/j.envc.2021.100334.Search in Google Scholar

[5] P. Abereton, B. Ordinioha, J. Mensah-Attipoe, O. Toyinbo. Atmosphere 14, 494 (2023), https://doi.org/10.3390/atmos14030494.Search in Google Scholar

[6] H. Effendi, M. Mursalin, S. Hariyadi. Front. Environ. Sci. 10, 1–7 (2022), https://doi.org/10.3389/fenvs.2022.757412.Search in Google Scholar

[7] H. Singh, N. Bhardwaj, S. K. Arya, M. Khatri. Environ. Nanotechnol. Monit. Manag. 14, 100305 (2020), https://doi.org/10.1016/j.enmm.2020.100305.Search in Google Scholar

[8] S. Shaibu, E. Inam, E. Moses, U. Ofon, O. Fatunla, C. Obadimu, N. Ibuotenang, T. Adeoye, E. Udokang. J. Niger. Soc. Phys. Sci. 1043, 1043 (2023), https://doi.org/10.46481/jnsps.2023.1043.Search in Google Scholar

[9] M. M. Abdullah, M. S. Ali, H. A. Al-Lohedan. J. Chem. 2023, 1 (2023). https://doi.org/10.1155/2023/7515345.Search in Google Scholar

[10] L. Ge, M. Zuo, R. Wang, Z. Qi, C. Zhao, C. Xu. J. Anal. Appl. Pyrolysis 177, 106320 (2024), https://doi.org/10.1016/j.jaap.2023.106320.Search in Google Scholar

[11] C. Zhao, L. Ge, R. Wang, H. Chu, L. Mai, W. Zha, Y. Wang, C. Xu. Fuel 352, 129061 (2023), https://doi.org/10.1016/j.fuel.2023.129061.Search in Google Scholar

[12] R. Araga, C. S. Sharma. Mater. Lett. 188, 205 (2017), https://doi.org/10.1016/j.matlet.2016.11.014.Search in Google Scholar

[13] M. G. Bernd, S. R. Bragança, N. Heck, L. C. P. Filho. J. Mater. Res. Technol. 6, 171 (2017), https://doi.org/10.1016/j.jmrt.2016.11.003.Search in Google Scholar

[14] S. Attal, R. Thiruvengadathan, O. Regev. Anal. Chem. 78, 8098 (2006), https://doi.org/10.1021/ac060990s.Search in Google Scholar PubMed

[15] A. E. Vladar. in Strategies for Scanning Electron Microscopy Sample Preparation and Characterization of Multiwall Carbon Nanotube Polymer Composites, Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, USA (2016).10.6028/NIST.SP.1200-17Search in Google Scholar

[16] M. Kierkowicz, E. Pach, S. Sandoval, E. Tobías-Rossell, B. Ballesteros, G. Tobias. Carbon 139, 922 (2018), https://doi.org/10.1016/j.carbon.2018.06.021.Search in Google Scholar

[17] C. Kang, H. Yang, G. Yu, J. Deng, Y. Shu. J. Mar. Sci. Eng. 11, 1294 (2023), https://doi.org/10.3390/jmse11071294.Search in Google Scholar

[18] U. Anwana Abel, G. Rhoda Habor, O. Innocent Oseribho. Am. J. Chem. Eng. 8, 36 (2020), https://doi.org/10.11648/j.ajche.20200802.11.Search in Google Scholar

[19] Z. H. Ho, L. A. Adnan. Trop. Aquat. Soil Pollut. 1, 98 (2021), https://doi.org/10.53623/tasp.v1i2.21.Search in Google Scholar

[20] Y. Takagi, S. Okada. Phys. Rev. B 79, 233406 (2009), https://doi.org/10.1103/physrevb.79.233406.Search in Google Scholar

[21] Y. Murakami, S. Maruyama. Phys. Rev. B 79, 155445 (2009), https://doi.org/10.1103/physrevb.79.155445.Search in Google Scholar

[22] R. R. He, H. Z. Jin, J. Zhu, Y. J. Yan, X. H. Chen. Chem. Phys. Lett. 298, 170 (1998), https://doi.org/10.1016/s0009-2614(98)01213-5.Search in Google Scholar

[23] Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama. Phys. Rev. Lett. 94, 087402 (2005), https://doi.org/10.1103/physrevlett.94.087402.Search in Google Scholar PubMed

[24] J. Njuguna, O. A. Vanli, R. Liang. J. Spectrosc. 2015, 1–11 (2015). https://doi.org/10.1155/2015/463156.Search in Google Scholar

[25] G. A. Rance, D. H. Marsh, R. J. Nicholas, A. N. Khlobystov. Chem. Phys. Lett. 493, 19 (2010), https://doi.org/10.1016/j.cplett.2010.05.012.Search in Google Scholar

[26] Z. M. Lazim, T. Hadibarata, M. H. Puteh, Z. Yusop. Water, Air, Soil Pollut. 226, 34 (2015), https://doi.org/10.1007/s11270-015-2318-5.Search in Google Scholar

[27] C. D. Liyanage, M. Pieris. Procedia Chem. 16, 222 (2015), https://doi.org/10.1016/j.proche.2015.12.045.Search in Google Scholar

[28] A. Misra, P. K. Tyagi, P. Rai, D. S. Misra. J. Nanosci. Nanotechnol. 7, 1820 (2007), https://doi.org/10.1166/jnn.2007.723.Search in Google Scholar PubMed

[29] S. A. Girei, S. P. Thomas, M. A. Atieh, K. Mezghani, S. K. De, S. Bandyopadhyay, A. Al-Juhani. J. Thermoplast. Compos. Mater. 25, 333 (2011), https://doi.org/10.1177/0892705711406159.Search in Google Scholar

[30] J. Shu, S. Cheng, H. Xia, L. Zhang, J. Peng, C. Li, S. Zhang. RSC Adv. 7, 14395 (2017), https://doi.org/10.1039/c7ra00287d.Search in Google Scholar

[31] T. Kopac. Int. J. Energy Res. 45, 20497 (2021), https://doi.org/10.1002/er.7130.Search in Google Scholar

[32] X. Zheng, G. Chen, Z. Li, S. Deng, N. Xu. Phys. Rev. Lett. 92, 106803 (2004), https://doi.org/10.1103/physrevlett.92.106803.Search in Google Scholar

[33] A. Melati, G. Padmasari, R. Oktavian, F. A. Rakhmadi. Appl. Phys. A 128, 211 (2022), https://doi.org/10.1007/s00339-022-05336-z.Search in Google Scholar

[34] C. Herrero-Latorre, J. Álvarez-Méndez, J. Barciela-García, S. García-Martín, R. M. Peña-Crecente. Anal. Chim. Acta 853, 77 (2015), https://doi.org/10.1016/j.aca.2014.10.008.Search in Google Scholar PubMed

[35] S. Saini, S. Reshmi, G. M. Gouda, S. A. K. V. S. Kumar, K. Bhattacharjee. Nanoscale Adv. 3, 3184 (2021), https://doi.org/10.1039/d0na01058h.Search in Google Scholar PubMed PubMed Central

[36] J. Caro Gutiérrez, O. M. Pérez Landeros, F. F. González Navarro, M. A. Curiel Alvarez, B. Valdez Salas, N. Radnev Nedev. Comput. Sist. 24, 20–26 (2020), https://doi.org/10.13053/cys-24-4-3117.Search in Google Scholar

[37] E. G. Ordoñez Casanova, H. A. Trejo Mandujano, M. R. Aguirre. J. Spectrosc. 2019, 1 (2019). https://doi.org/10.1155/2019/6043523.Search in Google Scholar

[38] W. K. Wong, A. Nojeh, R. F. Pease. Scanning 28, 219 (2006), https://doi.org/10.1002/sca.4950280404.Search in Google Scholar PubMed

[39] T. Arunkumar, R. Karthikeyan, R. Ram Subramani, K. Viswanathan, M. Anish. Int. J. Ambient Energy 41, 452 (2018), https://doi.org/10.1080/01430750.2018.1472657.Search in Google Scholar

[40] B. A. Olufemi, F. Otolorin. Environ. Eng. Res. 22, 384 (2017), https://doi.org/10.4491/eer.2017.011.Search in Google Scholar

[41] A. Udoji Itodo, O. Michael Itodo, E. Iornumbe, M. Omotola Fayomi. Prog. Chem. Biochem. Res. 1, 50 (2018), https://doi.org/10.29088/sami/pcbr.2018.1.5059.Search in Google Scholar

[42] O. Moradi, H. Sadegh, R. Shahryari-Ghoshekandi, M. Norouzi. Application of carbon nanotubes in nanomedicine. in Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering, pp. 90–128 (2015).10.4018/978-1-4666-6363-3.ch006Search in Google Scholar

[43] K. Zare, V. K. Gupta, O. Moradi, A. S. Makhlouf, M. Sillanpää, M. N. Nadagouda, H. Sadegh, R. Shahryari-ghoshekandi, A. Pal, Z. Wang, I. Tyagi, M. Kazemi. J. Nanostruct. Chem. 5, 227 (2015), https://doi.org/10.1007/s40097-015-0158-x.Search in Google Scholar

[44] M. N. Norizan, M. H. Moklis, S. Z. Ngah Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, N. Abdullah. RSC Adv. 10, 43704 (2020), https://doi.org/10.1039/d0ra09438b.Search in Google Scholar PubMed PubMed Central

[45] S. Kalia. in Natural Polymers-based Green Adsorbents for Water Treatment, 1, Elsevier, Amsterdam, Netherlands, 2nd ed (2021).Search in Google Scholar

[46] T. L. Adewoye, O. O. Ogunleye, A. S. Abdulkareem, T. O. Salawudeen, J. O. Tijani. Heliyon 7, e05866 (2021), https://doi.org/10.1016/j.heliyon.2020.e05866.Search in Google Scholar PubMed PubMed Central

[47] M. A. Ali, S. A. Shaaban-Dessuuki, N. A. El-Wassefy, S. I. Mostafa, M. H. Hussein. Inorg. Chem. Commun. 133, 108915 (2021), https://doi.org/10.1016/j.inoche.2021.108915.Search in Google Scholar

[48] B. Y. Eweida, A. M. Omer, T. M. Tamer, H. A.-E. Soliman, A. A. Zaatot, M. S. Mohy-Eldin. Polym. Bull. 80, 4813 (2022), https://doi.org/10.1007/s00289-022-04260-9.Search in Google Scholar

[49] T. Liu, S. Chen, H. Liu. Procedia Eng. 102, 1896 (2015), https://doi.org/10.1016/j.proeng.2015.01.329.Search in Google Scholar

[50] Saruchi, V. Kumar. Cellulose 26, 6229 (2019), https://doi.org/10.1007/s10570-019-02539-1.Search in Google Scholar

[51] E. Bulut, M. Özacar, A. Şengil. Microporous Mesoporous Mater. 115, 234 (2008), https://doi.org/10.1016/j.micromeso.2008.01.039.Search in Google Scholar

[52] G. Crini, H. Peindy, F. Gimbert, C. Robert. Sep. Purif. Technol. 53, 97 (2007), https://doi.org/10.1016/j.seppur.2006.06.018.Search in Google Scholar

[53] H. Mottaghi, Z. Mohammadi, M. Abbasi, N. Tahouni, M. H. Panjeshahi. J. Water Process Eng. 40, 101959 (2021), https://doi.org/10.1016/j.jwpe.2021.101959.Search in Google Scholar

[54] B. Nnamdi Ekwueme, C. Anthony Ezema, C. O. Asadu, C. Elijah Onu, T. O. Onah, I. Sunday Ike, A. Chinonyelum Orga. Arab. J. Chem. 16, 104443 (2023), https://doi.org/10.1016/j.arabjc.2022.104443.Search in Google Scholar

[55] G. K. Rajahmundry, C. Garlapati, P. S. Kumar, R. S. Alwi, D.-V. N. Vo. Chemosphere 276, 130176 (2021), https://doi.org/10.1016/j.chemosphere.2021.130176.Search in Google Scholar PubMed

[56] S. Kalam, S. A. Abu-Khamsin, M. S. Kamal, S. Patil. ACS Omega 6, 32342 (2021), https://doi.org/10.1021/acsomega.1c04661.Search in Google Scholar PubMed PubMed Central

Published Online: 2024-06-10
Published in Print: 2024-06-25

© 2024 IUPAC & De Gruyter

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0207/html
Scroll to top button